
Source-Level Debugging of Compiler-Optimised Code:
Ill-Posed, but Not Impossible

Stephen Kell
King’s College London

London, United Kingdom
stephen.kell@kcl.ac.uk

J. Ryan Stinnett
King’s College London

London, United Kingdom
jryans@gmail.com

Abstract
Debuggability and optimisation are traditionally regarded as
in fundamental tension. This paper disputes that idea, argu-
ing instead that it is possible to compile programs such that
they are both fully source-level-debuggable and fully opti-
mised, and that the essential problem to be solved is loss of
state. Although these two properties are usually not achiev-
able at the same time, it argues the feasibility of providing
the desired one ‘on demand’, and that metadata-based ap-
proaches extended with residual state can do so in a manner
that generalises beyond dynamic deoptimisation. Correct-
ness of debugging metadata is introduced as an ill-posed
problem, a partial correctness criterion is proposed, and fur-
ther approaches are discussed.

CCS Concepts: • Software and its engineering→ Soft-
ware testing and debugging; Compilers; Correctness.

Keywords: compilers, debug information, optimisation

ACM Reference Format:
Stephen Kell and J. Ryan Stinnett. 2024. Source-Level Debugging
of Compiler-Optimised Code: Ill-Posed, but Not Impossible. In Pro-
ceedings of the 2024 ACM SIGPLAN International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Software
(Onward! ’24), October 23–25, 2024, Pasadena, CA, USA. ACM, New
York, NY, USA, 16 pages. https://doi.org/10.1145/3689492.3690047

1 Introduction
Programming language implementers must grapple with
an essential conundrum. Humans write source code, while
machines execute something lower-level. Yet to understand
the program they intend to write, mortal programmers need
to see their code execute. How can the implementation enable
this?

Source-Level Debugging is a phrase partially capturing this
requirement. It calls to mind a useful but narrow class of
stepping-based interactive debugging tools. However, many

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
Onward! ’24, October 23–25, 2024, Pasadena, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1215-9/24/10
https://doi.org/10.1145/3689492.3690047

further tools embed the same requirement: those for source-
level tracing, profiling, crash reporting, introspection, visu-
alisation, security auditing, and in general any tool offering
a source-level understanding of an object-level execution. Put
differently, this includes any dynamic analysis whose re-
sults are in source-level terms.1 We will say ‘debugging’, but
intend it as a shorthand.
Compiler optimisation and source-level debugging have

long been seen as in fundamental tension. To a rough approx-
imation, unoptimised code debugs well and optimised code
doesn’t. A workaround is to disable optimisations, but the
optimised code is often what matters: it is what is deployed
(e.g. consider the need to trace a production system), it may
be the only usable option (e.g. a game or other real-time sys-
tem that is too slow unless optimised), and understanding its
performance may be the goal (e.g. reviewing a source-level
performance profile).

Different systems and language implementations have ap-
proached debugging differently. Any approach must address
two main aspects: a state-mapping problem (mapping some
or all object states upwards) and constructing a debug-time
view (what execution is observed to occur, in what terms?).
Sophisticated language virtual machines (VMs) employ dy-
namic deoptimisation to avoid the full generality of the state-
mapping problem and peg the debug-time view to an unop-
timised source-level execution—by actually switching the
VM to such a mode. This appears to confirm the tension
that what is observable is not what is optimised. Meanwhile,
ahead-of-time compiler toolchains instead appear to take on
the complete state-mapping problem, generating extensive
metadata which promises to map any object state back to
source, but keeping the debug-time view reflecting a perhaps
heavily optimised execution. The catch is that in practice
the mapping is ‘best-effort’: it is invariably incomplete (e.g.
some states are not mappable) and sometimes incorrect. The
view, despite its best-effort mapping to source terms, still
reflects the actions and sequencing of the optimised object
code—sometimes enlightening, but more often confusing.

1Even this may be too narrow. While ‘analysis’ implies a ‘read-only’ tool,
that observes but does not mutate execution state, certain tools do mutate it.
This is familiar even in debuggers, such as with ‘edit-and-continue’ features
or the ability to update program variables. In this paper we will restrict
ourselves to observation-only tools, but acknowledge that the mutating
kind can bring additional value.

https://orcid.org/0000-0002-2702-5983
https://orcid.org/0000-0002-3101-1189
https://doi.org/10.1145/3689492.3690047
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3689492.3690047

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Stephen Kell and J. Ryan Stinnett

{pc=foo.c:43:2
, x=69105,

a=69105, ...}
{pc=foo.c:44:2

, x=69105,
a=69105, ...}

{pc=foo.c:42:2
, x=0,

a=69105, ...}

{pc=foo.c:46:3
, x=69105,

a=0, ...}

x=a;

if (x) ...

a = 0;

x = getchar();

{rip=0xf00f010
, rax=69105,

rbx=69105, ...}
{rip=0xf00f013
, rax=69105,

rbx=69105, ...}

{rip=0xf00f00d
, rax=0,

rbx=69105, ...}

{rip=0xf00f01c
, rax=69105,

rbx=0, ...}

mov %rax, %rbx

cmp %rax,%rax

jnz 0xfaafaa

int 0x80

{rip=0xf00f019
, rax=69105,

rbx=69105, ...}

xor %rbx, %rbx

Figure 1.A piece of the concrete transition system (left) for a simple source program (to appear in Fig. 2), and the corresponding
piece of the object program’s transition system (right). State mapping means capturing the correspondence between these
states. Here, this includes that a is in rbx, x is in rax, and that pc maps to rip as shown by the shades of each bubble.

These issues arise to an degree correlated with the level of
optimisation, again appearing to affirm the tension.

This paper explores and explodes that tension. It need not
be true that ‘more debuggability means less optimization’;
rather, we posit that the true trade-offs are better seen as over
a different and larger set of variables. Holding optimization
constant, full source-level debuggability is achievable—if
one is prepared to allow the debugger to be more stateful,
more complex, or in some senses less timely. The issues
arising are confounding to the ‘classically trained’ language
implementer, in that adequate vocabulary is lacking and the
overlap with better-understood problems, such as verified
compilation, is less than it might seem. Our contributions
are as follows.

• We elaborate source-level debugging in terms of state
mapping, further developing the idea of residual com-
putation found in recent literature, and proposing the
mapping’s density, height and fidelity as a better fram-
ing of the classical optimisation–debuggability ten-
sion.

• Using the same framing, we consider the temporal
imprecision of metadata-based debugging under code
motion optimisations, and sketch what we believe to
be the first automatable correctness criterion for lo-
cal variable information as emitted by compilers per-
forming such optimisations. Although only a partial
correctness property, we argue that it is respected by
most compiler passes—but not all, and we identify the
necessary criteria.

• Having motivated the view of debugging in concurrent
terms, where observation occurs in parallel with the
optimised computation, we argue that debugging tools
can only be called correct up to some defined fidelity
property. We suggest how fidelity might be specified
by borrowing ideas from concurrent memory models.

2 State Mapping: Two Approaches
We first view debugging in terms of transition systems.

2.1 The Transition System Model
We can view both source and object program as transition
systems where each state is labelled with the value of all pro-
gram variables, including the program counter and (although
not shown in our diagrams) stack and heap. Each state space
is then, roughly, a Cartesian product of these many com-
ponents. Fig. 1 shows a simple example. State mapping in
this case is almost one-to-one, but not quite: the object-level
diagram has five states instead of four, because two instruc-
tions are required to realise the conditional branch of a single
source-level if construct. Note also that as shown, each sys-
tem is concrete: the distinct bubbles should not be seen as
nodes in a control-flow graph, but rather as fully concrete
program states, or collections of bits. The only branching is
therefore on nondeterminism: this is a getchar() operation
in the example, but could also include other input actions
(or, in a concurrent program, scheduling decisions).

Since the target (object) machine is lower-level than the
source (abstract) machine, the state spaces are not in bijec-
tion. There may be mapping points where the object pro-
gram’s state corresponds precisely to a source-level state.

object-level or optimised execution

source-level or unoptimised execution

mapping points

object-level or optimised execution

deoptimise
(at a safe point)

deoptimised source-level execution

object-level or optimised execution

temporally imprecise source-level view

some mapping
always
available

some mapping
always
available

occasional
precise
mapping

point when
debugger attached

attachment
headway

2.2 Approach 1: Dynamic Deoptimisation
Dynamic deoptimisation [17] ‘solves’ the problem of debug-
ging optimised code by an abdication. Only unoptimised
execution is ever observed! This allows a faithful observa-
tion of source semantics, while reducing the penalties to
performance and convenience, relative to running the entire
program unoptimised from the start. However, the observed
execution is always the slow, unoptimised one.

Source-Level Debugging of Compiler-Optimised Code: Ill-Posed, but Not Impossible Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

The design can be seen as limiting the state mapping prob-
lems that the implementation must solve. Only so many
optimised-program states must be mappable to unoptimised
ones—enough to meet a user’s timeliness expectation. A de-
bugger might not attach immediately, but rather at the next
‘safe point’, such as a call or loop back edge—more than fre-
quent enough in practice. Therefore, under such a scheme,
only call sites and back edges need be mappable. The map-
ping is kept in private compiler-generated metadata, usually
also used by the garbage collector.

object-level or optimised execution

source-level or unoptimised execution

mapping points

object-level or optimised execution

deoptimise
(at a safe point)

deoptimised source-level execution

object-level or optimised execution

temporally imprecise source-level view

some mapping
always
available

some mapping
always
available

occasional
precise
mapping

point when
debugger attached

attachment
headway

The density of these mapping points defines the granular-
ity of simulation that must exist between optimised program
and source program. Here it is clearly denser (finer-grained)
than the input–output relation, but not so fine-grained as to
offer a mapping at every instruction.
Deoptimisation is specialised to interactive debugging,

which occurs at human speed. It is less applicable to tracing,
and not at all suitable for profiling, where retaining opti-
mised execution speed is desirable or essential. The contract
between language implementation (compiler) and tools is
therefore specialised to a class of tool: for example, on the
Java platform the interface for interactive debugging (JDI) is
separate from the bytecode instrumentation interface cater-
ing to profiling and tracing (JVMTI). None of these interfaces
exposes the state mapping itself, even though the compiler
must generate it—it exists as compiler-private metadata de-
scribing how to deoptimise at each safe point.

2.3 Approach 2: In-Toolchain Debug Metadata
A contrasting approach is taken by ahead-of-time compila-
tion toolchains in the tradition of Unix, C, C++, LLVM and
so on. In principle, their compiler-generated debug meta-
data undertakes to map any binary state to a source state. A
debugger can be attached at any time. There is no deoptimi-
sation, so there are no safe points (and, not coincidentally,
usually no garbage collector). Execution can proceed at full
speed even with a debugger attached. However, unlike with
safepoints, the compiler is under no finer-grained simulation
requirement than to preserve the input–output behaviour of
the source program, i.e. the basic contract of correct compi-
lation.
Metadata is public and standardised, in formats such as

the venerable STABS [21] or the more modern Dwarf [13]
and CodeView [22]. It is part of the contract between the

tool and compiler, and the same metadata can be used by
many tools. Operating system features, such as ptrace(),
provide tool-specific foundations, while metadata remains
tool-agnostic.

object-level or optimised execution

source-level or unoptimised execution

mapping points

object-level or optimised execution

deoptimise
(at a safe point)

deoptimised source-level execution

object-level or optimised execution

temporally imprecise source-level view

some mapping
always
available

some mapping
always
available

occasional
precise
mapping

point when
debugger attached

attachment
headway

We observe that our mapping has two dimensions: it can
vary in density (how many object states are mapped?) and
also in height (what is the semantic distance between object
and source? how complex is the mapping as a computation?).
Density determines the granularity of source-level stepping,
and also the attachment headway for deoptimisation. Height
determineswhat execution is actually being observed. We have
been thinking so far in terms of a single fixed height: we map
back to ‘source level’. In reality, however, this is leaky: details
of the object program are often betrayed ‘by accident’. At
least one approach in the literature proposes to embrace this,
providing a viewpoint short of the original source program,
as a way to lessen mapping difficulties [30]. This approach is
described as ‘non-transparent’, meaning it does not attempt
to create the illusion that the original source program is
executing; we could see it as an intentionally ‘less tall’ state
mapping. The strength of the toolchain approach, relative to
deoptimisation, is that it lets us observe the object execution,
even at instruction granularity (its mapping appears fully
dense), while at least attempting to view it at source level
(i.e. it may aspire to a fully tall mapping, but often falls
short). To make possible this tall mapping under complex
optimisations, real metadata formats are Turing-powerful.
Despite the appearance of power, in practice the debug-

time view is a shaky one: control flow ‘bounces’ around lines
of the optimised program, and observed values of variables
need not coherently reflect any one source state. We say it
is ‘temporally imprecise’ (intentionally borrowing the word
‘precise’ from hardware literature on exceptions, which we
revisit in §7). The problems are not limited to temporal pre-
cision, however: in practice local variables are often missing
or simply incorrect [1, 28]. We can talk about a mapping’s fi-
delity, encompassing all issues of correctness and precision
(when fixing height and density), with temporal precision
as one important sub-dimension.
The claim of a fundamental tension is often used as mit-

igation for a lack of fidelity. As we will explore, there is a
fundamental issue relating to retention of state, but when
considering fidelity generally, other more practical engineer-
ing issues appear comparable in significance. Metadata is
of unwieldy design, comes with no strong correctness or

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Stephen Kell and J. Ryan Stinnett

...
42: x = a;
43: if (x) {
44: a = 0;
45: x = getchar();

...

(dbg) break foo.c:43
(dbg) run
Hit breakpoint 1
43: if (x) {
(dbg) print x
69105

(dbg) break foo.c:43
(dbg) run
Hit breakpoint 1
43: if (x) {
(dbg) print x
<variable optimized out>

Figure 2. Source listing and two possible debugging sessions for different compilations of the program. In the right-hand
session, variable x is not available. The debugger assumes this is because it has been optimised out, but a more likely explanation
is that the compiler incorrectly omitted to describe x in the debug info.

TAG_compile_unit
AT_producer : GNU C17 10.2.1 20210110
AT_language : ANSI C99
AT_name : foo.c
AT_comp_dir : /src/libfoo

TAG_subprogram
AT_name : f
AT_type : <9> (int)
AT_low_pc : 0xf00eef0
AT_high_pc : 0xf00f0fc

TAG_formal_parameter
AT_name : a
AT_type : <9> (int)

(continued)
AT_location : OP_reg3 (rbx)
TAG_variable
AT_name : x
AT_type : <9> (int)
AT_location : OP_reg0 (rax)

9: TAG_base_type
AT_byte_size : 4
AT_encoding : signed
AT_name : int
TAG_subprogram
AT_name : getchar

File name line start addr stmt?

...
foo.c 42 0xf00f00d y
foo.c 43 0xf00f010 y
foo.c 44 0xf00f019 y
foo.c 45 0xf00f01c y
...

Figure 3. Dwarf value (‘info’) information (left, middle) and line table (right) for a plausible compilation of the code in
Fig. 2, encoding the correspondence between the two sides of Fig. 1. Inspecting local variables relies on correct and complete
variable records including location expressions (which can instead compute a variable’s value if it is not stored at any
location), and also on low_pc and high_pc (or other equivalent forms) to find the relevant record. The OP_ tokens denote
instructions in expressions for a stack machine, although the expressions here simply opaquely name a specific machine
register.

completeness criterion, and must be transformed by the opti-
miser just as it transforms the code. Therefore, for compiler
authors, generating it is an onerous task, and corners are
often cut.
The toolchain approach, although seemingly more pow-

erful, is also more complex and more confounding than dy-
namic deoptimisation. What does it mean for this metadata
to be correct? Can a ‘temporally imprecise’ mapping nev-
ertheless be called correct? How can its recurring infideli-
ties be squared with the apparently huge possibilities of
Turing-powerful metadata? We explore this in the forthcom-
ing sections, where ‘debug info’ will refer to metadata in the
ahead-of-time tradition—typified by the Dwarf [13] format,
the most expressive in widespread use.

3 Understanding Debug Information
Debug info has two main parts, which we will call line and
value information.2 Both encodemappings between states of
the source program and states of the object program. Strictly

2A third part, frame information, differs in that it is purely a machine-level
construct: it maps a callee’s stack and registers to their state at the time
of entry to the current call, and so enable stack-walking without frame
pointers. We do not consider it here, but it has been studied recently [2].

we should say ‘components of states’, recalling our ‘Cartesian
product’ from earlier (§2.1).

Line information addresses the program counter (PC) com-
ponent: it maps program counter values to source coordi-
nates (file, line, and sometimes columns or ranges thereof)
and back, and enables display of source code, setting break-
points, and so on.
Value information addresses the local and global variable

components: it includes where variables are located, and
how the bits and bytes encode its source value. The latter
information is called ‘type information’ but takes a form
largely agnostic to the source language. Together, these en-
able debug-time inspection of program values: both directly
in named variables, and indirectly by following pointers or
references (e.g. into the heap). Metadata describes both data
and code (‘subprograms’ in Dwarf), including which lexical
scopes are active at a given program counter. and where a
called function’s body has been inlined. Fig. 3 shows a very
simple example in Dwarf based on the code in Fig. 2.

Dwarf-generating compilers consider it a bug if compiling
with debug info enabled (-g) changes the generated code
[33]. In other words, enabling debugging does not curtail
optimisation in any way.

Source-Level Debugging of Compiler-Optimised Code: Ill-Posed, but Not Impossible Onward! ’24, October 23–25, 2024, Pasadena, CA, USA
Suppose MAX is 5 and get_start returns 2.
Over such a program path, what does i do?

0

2

3 4 5

3 4
2

5

1 int f(int *data, void *arg)
2 {
3 int i = 0, tmp, out1 = 0, out2 = 0;
4
5 i = tmp = get_start(arg);
6 for (; i < MAX; ++i)
7 {
8 out1 ^= data[i];
9 }
10
11 for (i = tmp; i < MAX; ++i)
12 {
13 out2 &= data[i];
14 }
15 g(out1, out2);
16 return tmp;
17}

local location range
data in r1 at all points
arg in r2 at all points
i in r3 from 3
tmp in r4 from 5
out1 in r5 from 3
out2 in r6 from 3

0

2

3 4 5

3 4
2

5

1 int f(int *data, void *arg)
2 {
3 int i = 0, tmp, out1 = 0, out2 = 0;
4
5 i = tmp = get_start(arg);
6 for (; i < MAX; ++i)
7 {
8 out1 ^= data[i];
9 }
10
11 for (i = tmp; i < MAX; ++i)
12 {
13 out2 &= data[i];
14 }
15 g(out1, out2);
16 return tmp;
17}Figure 4. Left: a simple example function in C. Middle: simple debug info for a relatively unoptimised compilation on a fictional

architecture; we assume locals are allocated to registers which are plentiful. Right: the source-level concrete progression of
variable i, for an execution where MAX is 5 and get_start() returns 2.

In totality, the debug info maps states to states, as we have
been conceptualising in terms of transition systems. How-
ever, each record of line or value information addresses a
component of the state space, and therefore relates sets of
many states at a time (e.g. ‘when rip is between 0xf00f010
and 0xf00f01c, source variable x has the value in register
rax’ or ‘. . . execution is on line 42’). This ‘PC-keyed’ factor-
ing is one of many complexities of debug info formats such
as Dwarf, arising from a mixture of necessity and accident.
To illustrate necessity: suppose variable x moves between
registers and the stack. Debug info must describe, at each
instruction, where such a ‘wandering’ variable resides—no
longer the trivial function OP_reg0 but requiring a case split
over the program counter. Similarly, consider some variable
that is no longer modelled directly in the object program
but can be computed from other program state, such as the
index variable in a statically bounded loop that has been un-
rolled into a straight-line segment in the binary code. In the
unrolled loop, the loop index will be implied by the program
counter. The debug info may describe how to recover the
index at each instruction.

Debug info is therefore a computational artifact: it encodes
functions of the object program state. To do this, Dwarf
embeds a Turing-powerful stack machine language. This
allows it to bridge the sometimes-large gap between what
the object program internally does compute and what the
source program would compute, perhaps encoding arbitrary
pure functions. For example, consider a variable err that is
frequently updated, by err = f(state), where f denotes
some complex expression (or inlineable pure function). If
state is core to the program logic but err is referenced
only in assertions, then when assertions are macro-deleted
in a given build of the software, both the variable err and
the computation f(state) might be eliminated from the

optimised program. However, both could still be described
in the debug info, including a residualised stack-machine
representation of f.
As compilers perform transformations at the code level,

they generate functions at the state level which ‘undo’ those
effects. Note the difference in level: this reflects the differ-
ence between compile time (code), when transformation
is performed, and run time (state) when debugging occurs.
The computation performed by debug info is not simply the
inverse transformation on code. These state-level computa-
tions are onerous for compiler developers to generate, hard
to test, and their correctness often not prioritised. Unsur-
prisingly they are frequently incomplete and incorrect [1].
Previous work has characterised debug info as capturing a
recovery function [36] or residual computation [28]. In the
next section we will review these, and ask more generally:
what exactly is debug info is doing? What are its limitations,
and what does it mean for it to be correct? We will develop
our state-mapping framing further in order to answer these
questions.

4 Residual Computation at Work
To illustrate state mapping and introduce the idea of resid-
ual computation, in this section we walk through some ex-
ample optimisations on a fictitious simple piece of code,
shown in Fig. 4. An unoptimised compilation would result
in a straightforward mapping from object to source states,
which is shown in the middle of the figure. On the right, the
valuations of variable i are shown for a particular concrete
execution, where MAX is 5 and get_start() returns 2. In
what follows, we will consider the effects on the variable i
of various optimisations to this code, examining the same
concrete execution each time.

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Stephen Kell and J. Ryan Stinnett
Suppose MAX is 5 and get_start returns 2.
What does r3 (holding i from line 5) do?

2

3 4 5

3 4

1 int f(int *data, void *arg)
2 {
3 int i = 0, tmp, out1 = 0, out2 = 0;
4
5 i = tmp = get_start(arg);
6 for (; i < MAX; ++i)
7 {
8 out1 ^= data[i];
9 }
10
11 for (i = tmp; i < MAX; ++i)
12 {
13 out2 &= data[i];
14 }
15 g(out1, out2);
16 return tmp;
17}

2
5

local location or
value

range

data in r1 at all points
arg r2 at all points
i value 0 from 3 to 5

r3 from 5
tmp r4 from 5
out1 r5 from 3
out2 r6 from 3

2

3 4 5

3 4

1 int f(int *data, void *arg)
2 {
3 int i = 0, tmp, out1 = 0, out2 = 0;
4
5 i = tmp = get_start(arg);
6 for (; i < MAX; ++i)
7 {
8 out1 ^= data[i];
9 }
10
11 for (i = tmp; i < MAX; ++i)
12 {
13 out2 &= data[i];
14 }
15 g(out1, out2);
16 return tmp;
17}

2
5

value 0 from 3 to 5
in r1 from 5

0

Figure 5. Left: a simple ‘zeroing elimination’ optimisation on the code of Fig. 4. Middle: how debug info can residualise the
zeroing. Right: the source-level concrete view of variable i recoverable at debug time using residual computation, for the same
execution as Fig. 4. Orange denotes residual artifacts.

1 int f(int *data, void *arg)
2 {
3 int i = 0, tmp, out1 = 0, out2 = 0;
4
5 i = tmp = get_start(arg); int *p = &data[tmp];
6 for (; i < MAXp < &data[MAX]; ++ip)
7 {
8 out1 ^= data[i]*p;
9 }
10
11 for (i = tmpp = &data[tmp]; i < MAX
12 p<&data[MAX]; ++ip) {
13 out2 &= data[i]*p;
14 }
15 g(out1, out2);
16 return tmp;
17}

data: in r1 at all points

arg: in r2 at all points

i: value 0 from 3 to 5
 value (r7-r1)/4
 from 5

tmp: in r4 from 5

out1: in r5 from 3

out2: in r6 from 3

local location or
value

range

data in r1 at all points
arg in r2 at all points
i value 0 from 3 to 5

value (r7-r1/4) from 5
tmp in r4 from 5
out1 in r5 from 3
out2 in r6 from 3
p in r7 (synthetic)

2

3 4 5

3 4
2

5

value 0 from 3 to 5
value (r7-r1)/4
 from 5

0

Figure 6. Left: a more complex optimisation (strength reduction) on the code of Fig. 5. Middle: how debug info can residualise
the strength reduction, resurrecting i which is no longer directly present in the object program. Right: the source-level concrete
view of variable i again recoverable at debug time using residual computation. The synthetic temporary p is assumed to reside
in register r7. Orange denotes residual artifacts.

Whereas classical compiler texts view optimisations as
lossily reducing or eliminating computation, with debug info
we argue it is better to see optimisations as losslessly ‘resid-
ualising’ computation. Rather than eliminating computation,
it is ‘moved into’ debug info. This is illustrated in Fig. 5 with
a simple optimisation to remove the redundant zeroing of i
on line 3. While in the object code, the zeroing would appear
to be removed (typically saving one instruction), we see it is
not removed but rather moved into the debug info, which
now records the fact that i is zero at line 3.

Similarly, while this initial assignment of zero to i would
be called ‘dead’ in classic compiler terms, in debugging we
must beware two conflicting meanings of ‘dead’. ‘Dead code’,
meaning unreachable code, can safely be eliminated with no

loss of debuggability. In contrast, ‘dead stores’ typically are
reachable, just will not be read by the program. Since they
might still be read by the debugger, these should be resid-
ualised into debug info rather than eliminated altogether.
Again, this motivates how, in our example, this zeroing is
recorded in the debug info even though i is never zeroed in
object code. since a user might nevertheless expect to see i
initially equal to zero.

Next, in Fig. 6, we consider a more expansive optimisation,
strength-reducing the array indexing in the two loops by
replacing the loop induction variables by a pointer. Strength
reduction refers to elimination of an expensive operation
such as multiplication in an array-indexing calculation, with
one or more cheaper operations such as addition. In our case

Source-Level Debugging of Compiler-Optimised Code: Ill-Posed, but Not Impossible Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

the indexing is replaced a pointer increment at each loop
iteration, avoiding the need for a fresh index calculation
each time. As before, in a debugger the developer could
still observe the concrete execution seen on the right, with
variable i appearing to progress through its source-level
valuations, even though i is no longer directly represented
in the object code. The compiler-generated temporary p is
assumed to reside in register r7, and i can be computed as a
function of this register and data (still in r1).

5 The Essential Problem: Loss of State
Our examples so far have been rather convenient in a few
ways. Firstly, the control structure has been unchanged.
There is an injective mapping from distinct points in the
source program to distinct points in the object program.
(We have identified source points only by line numbers, but
this could be refined into terms of columns ranges, perhaps
following the statements or sequence points of the source
language.) Secondly, not only are the control states injec-
tively mappable, but execution continues to visit these in
the same order: execution order in the object program is
the same (after mapping) as the order in the source program.
Thirdly, residual computations have been stateless pure func-
tions: all the inputs they needed have been available in the
current object program state.
Not all optimisations are so convenient: those in the cat-

egories of code merging, code motion and/or (what we will
call) state dropping clearly do not satisfy these properties.
These categories are inter-related: code merging can be seen
as dropping control state, and code motion as refactoring
the control state, i.e. dropping some to replace it with other.
Of course non-control state is commonly also dropped, such
as when local variables found to be ‘dead’ during register
allocation are discarded from the program’s run-time state
(as with our err example in §3).

Ostensibly dropped statemight be recoverable. Consider an
optimisation that merges identical tails of two basic blocks:

if (cond) {
...
++x;

} else {
...
++x;

}

. . . to become:

if (cond) {
...

} else {
...

}
++x;

The mapping of control positions is non-injective, since
multiple points in the source program are realised by the
same point in the object program. However, this could be dis-
ambiguated as long as cond is still available or computable.
The framing by Zurawski [36] of debug info as recovery func-
tions captures exactly this intuition: a function over object
program state can recover the source-level view—although
only if there are sufficient redundancies in the object pro-
gram’s state space.

Since version 3 of Dwarf in 2005, eliminated local vari-
ables can be recovered in this way. Control state, such as the
relevant line number in this example, still cannot: it would
require the line number table to be indexable not only by the
program counter, but by other state that can tell us where
we came from, in our case cond. Dwarf’s current line ta-
ble happens not to be so indexable. (This recalls our earlier
description of Dwarf as ‘PC-keyed’: the program counter
occupies a special role.)
Unfortunately, cond might not always be available! This

scenario is not limited to non-injective control mapping
situations; it could also apply in a store elimination similar
to our earlier i = 0 example. Suppose:
21: t = f();
22: int i = t + 1;
23: for (i = x; ...)

. . . is optimised to:
21: t = f();
22: int i;
23: for (i = x; ...)

. . . and we would like to residualise i at line 22 as the
computation t+1. What if t itself is not available? The trans-
formation has potentially shortened the live range of t, since
it is no longer used on line 22, meaning the compiler will
attempt to drop its state. Here, again, our definition of ‘avail-
able’ does not match that of standard compiler texts. For us, a
value is available either if it is stored in the program state, or
if it is residually computable i.e. computable as some function
of (recursively) available values. Constructing the residual
computation for i, we are in effect elaborating the backward
slice [31] of t+1. We can stop adding to our backward slice
when we hit values still stored in object program state, which
are trivially available. but we are in trouble if we hit a value
that is truly unavailable. These unavailable values consist of
that subset of the nondeterministic input to the program that
is no longer retained, either directly or inferrably, in object
program state. Although the debugger can re-do computa-
tions, it cannot generally re-perform input actions of the
debugged program. This is why Turing-powerful metadata
is not by itself enough to counter arbitrary compile-time
transformations.
The compiler could conservatively assume the input is

lost and so omit any residualisation, curtailing debuggability.
Or, since it is in charge of generating code, it could refrain
from discarding the input-dependent state at all, curtailing
optimisation. This is the classic dilemma faced by even the
most diligent compiler pass author.
Is there a way between the horns of this dilemma? State-

dropping optimizations, of which code motion is one kind,
have been viewed as ‘unavoidably’ curtailing debuggability
owing to an apparent lack of any recovery function. In an
article that pithily summarises many aspects of the problem,
Brender et al. [6] wrote as follows.

Unfortunately, code-motion-related opti-
mizations generally lack recovery func-
tions and so must be foregone [sic].

But under what assumptions do these optimisations truly
lack a means of recovery? Since state-dropping seems to be

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Stephen Kell and J. Ryan Stinnett

the central issue, what prevents us simply from not dropping
the state, at least when a debugger is attached?

Our short answer is that the assumption to date has been
one where debug info retains no state. The framing of ‘re-
covery functions’ conveys this implicitly: from some place
where the base (non-residual) program is stopped, such a
function may inspect program state as, input and produce
(hopefully) a meaningful source-level output. Then, control
passes back to the base program or, if the debugger user
chooses, to another recovery function answering a separate
query. Each recovery function is a stateless computation that
is composed sequentially with the base program.
The framing of residual computation instead of recovery

functions, intends a contrast: the debug-time computation
holds state, and therefore can be seen to run continuously
in parallel with the base program. It is, in effect, a process
consuming the same input as the base program, and fre-
quently synchronising with it—a frequency determined by
the density of mapping. Since compilers must preserve in-
put/output behaviour, it seems feasible to require that all
input action points be mappable. In between input actions,
the computation has all the information it needs to construct
an arbitrary debug-time view, including (but not limited to)
one exhibiting the naïve source semantics.

In such an approach, there is no longer a trade-off between
optimization and debuggability! In extremis, both fully op-
timized and fully unoptimized versions of the code might
run in parallel—the latter being the maximal residual compu-
tation, executed in the debugger, and the former being the
‘real’ object program, executing on the target. Assuming this
residual computation need only run ‘on demand’, when de-
bugging operations are performed, the trade-off disappears:
we can have both a real full-speed execution and a source-
level view. In its place is left a timeliness concern, i.e. with
how much headway the debugger must have been attached:
a trade-off that is familiar from dynamic deoptimisation.
Since input actions define the minimum synchronisation be-
tween these parallel computations, we expect the worst-case
headway to be the time to the program’s next input action,
but opportunistically there are likely to be many further
synchronisation points.
There is also an efficiency concern, not only in terms

of resources for the parallel computation but more signif-
icantly to provide communication. Conceptually, all input
must still be received via the object program, and commu-
nicated downstream to the debugger. Virtualisation-based
approaches to dynamic analysis have encountered and ad-
dressed closely related challenges [8], and there is a literature
on faster approaches to communication than the standard
ptrace()-based trap approach [18].
How does this compare to dynamic deoptimisation? It is

similar, in that the unoptimised view is restored by additional
computation, activated on demand. However observation
of just the base-level (object) computation remains possible,

and the residual code ‘sits atop’ the base code (e.g. may access
its state) rather than replacing it. Residual computation is
done only to the extent needed: where little optimisation was
done, little residual code or state are needed. There need not
be a just-in-time compiler or on-stack replacement engine,
but the necessary debug info will be no less detailed than the
metadata used by such systems, detailing the stack and reg-
ister contents. The residual computation conceptually exists
in the debugger, not inlined into the deoptimised program
code. This separation may be helpful, but may add commu-
nication overhead. The essential outcome is that there is
the option of not only executing a fully optimised, object-
program execution but also observing that execution, where
that degree of observation suffices, or, on demand, restoring
the full source-level semantics. Both can even be available
at once, rather than requiring a binary choice. The result is
rather like the difference between deoptimisation and split-
ting fast from slow paths at compile time: under the latter
approach both paths exist at once, and may even share code,
but the slower path is used only when needed; for us it also
executes ‘residually’ in the debugger.
In the rest of this paper, we survey the consequences of

this. Firstly, we argue that correctness of debug metadata
becomes an ill-posed problem, in need of further specifi-
cation regarding dimensions such as its density and height
of mapping. Secondly, we note that although Dwarf-based
debugging has not yet reached this full stateful design, it
is well on the way, suggesting that our design is reachable
at least somewhat incrementally; we survey the relevant
foreshadowings. Thirdly, what can be done to move cur-
rent infrastructure closer towards it, especially starting from
the current temporally imprecise behaviour? Finally, what
further understanding must be gained, and connections de-
veloped, to make this part of a predictable and productive
development infrastructure?

6 Correct Debug Info: An Ill-Posed Problem
Given the complexity of both current and hypothetical de-
bugging systems, and the patchy state of present ones, a
correctness property is highly desirable. It is a tempting to
try to borrow this from more familiar program analysis prob-
lems relating multiple realisations of a program. However,
this does not work—or, at least, debug info correctness is
not equivalent or reducible to any of the following such
problems.

Decompilation means recovering an equivalent source
representation of an object program. Since a source
program does not include a state mapping, even a hy-
pothetical perfect decompiler that could recover the
original source code would not help to enable debug-
ging at all. Indeed the original source code is routinely
available at debug time, but only in addition to debug
info providing the state mapping.

Source-Level Debugging of Compiler-Optimised Code: Ill-Posed, but Not Impossible Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

Verified compilation means showing that a compiler al-
ways generates an object program whose input/output
behaviour correctly refines that of a valid source pro-
gram. However, such a compiler need not produce or
retain any mapping between source and object states,
nor prove anything about such a mapping except at
input/output actions.

Translation validation means showing the input/out-
put behaviour of one program is preserved or refined
by a transformed or translated program. It can be done
end-to-end [23] or at pass-by-pass level [20]. Again,
such a tool need not produce or retain any mapping
between source and object states, nor prove anything
about such a mapping except at input/output actions.

The essential reason is that these problems are framed in
terms of the program’s input/output behaviour. However,
a ‘debugger’ that could only step between input or output
actions, not any intervening points in execution, would not
be considered worthy of the name. Put differently, it’s ax-
iomatic that a denser mapping is needed for debugging. What
should this mapping be? When is it correct? This cannot be
answered in input/output terms, since it concerns the inci-
dentals of how the programmer realised their source-level
version. These incidentals—computation the object program
does not do but the source program does, internal states that
are not observable from the object program’s input/output
behaviour—are defined to be irrelevant in all the above prob-
lems. Yet it may be only from observing these ‘incidentals’
that the programmer can gain the source-level insight they
seek. (Whereas, to paraphrase Perlis, a low-level program-
ming language requires attention to the irrelevances of the
machine, one could say high-level debugging must enable
attention to the irrelevances of the human.)
We want a dense mapping, that can relate back to source

level more than just input/output events. We also ideally
want a tall mapping, reaching all the way up to source level,
e.g. showing us the index variable i not the synthetic pointer
p in our earlier example. Adding density risks losing tem-
poral precision (one may see a composite of many source
states, perhaps together with compilation artifacts). Adding
height may compute a closer-to-source view but departing
further from what actually runs, making it less appropriate
for some tools’ observation purposes (a profiler that counts
zero-initialization overhead would not want to count the
residual zeroing of our variable i) or even just for debugging
some bugs (if we suspect a compiler bug, we want to focus
on what actually happens).

Standard debugger features become underspecified in this
light. Should a watchpoint on i, in our example from Fig. 5,
fire when it is residually zeroed, or only when it is assigned
‘for real’? And since, after strength reduction, it never is
assigned ‘for real’—only p is—should the watchpoint ever

fire and, if so, what should the debugger show? If a compiler
has optimised:

x++; x++; x++; . . . into: x += 3;

. . . should the watchpoint fire one or three times?
All these are questions that can be answered reasonably in

many ways. Without explicitly specifying the desired view
of execution, in terms of height and density and temporal
precision, correctness is ill-posed. We view this as a more
essential issue than ‘source-level debuggability trades off
against optimization’: the real issue is that a single view
cannot be fully faithful both to source and object program
at the same time. But multiple views can be available! We
should not suppose otherwise.
Another way to view this is that what is debugged is al-

ways a fiction, and one in need of careful specification. Indeed
this fiction stretches down to the hardware level: mapping
at instruction granularity relies on a hardware-provided illu-
sion of single-stepping. Our notion of temporally precise(-or-
not) mappings has an analogue in computer architecture’s
notion of precise exceptions, and there are interesting paral-
lels in how modern out-of-order processor cores wrangle
this. We explore these and other similarities next.

7 Statefulness Foreshadowed
Although a debugging toolchain based on stateful residual
computation is yet to be designed per se, this does not mean
it does not exist. Debugger toolchains have already departed
on several fronts from a purely stateless ‘recovery function’
paradigm. We survey these here.

Record–Replay and Omniscience. Record–replay sys-
tems and omniscient debuggers necessarily retain state, to
allow past program states to be recovered. Replay is fairly
widespread, thanks both to basic instruction-wise emulators
(stock gdb has included one since 2009 [15]) or more efficient
and sophisticated recording including that of rr [25] and
UndoDB [14]. Whereas replaying or reversible debuggers
show only a single state at a time, a more fully ‘omniscient’
system such as Pernosco [24] supports queries over an en-
tire execution trace. (By contrast, in a replay or reversible
setting, revisiting the past remains an indirect process of
setting breakpoints or watchpoints and collecting the results
at specific states.) The stateful residual computation we have
envisaged, with its ‘attachment headway’, can be seen as
an ‘attach-on-demand’ version of record–replay, whereas
existing implementations require attachment from program
start. Although we framed residual state around recording
state dropped by the object program, the dual approach of
recording nondeterministic input as it enters, and using re-
play to regain subsequent states, allows greater efficiency.
Still-greater efficiencies can be obtained from system-wide
approaches [11]. An efficient implementation of residual
state would likely employ some hybrid of these approaches

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Stephen Kell and J. Ryan Stinnett

to minimise the communication overheads, similar to the par-
allelised approaches to dynamic analysis mentioned earlier
[8].

Location Views. Given a compilation which optimises
(for example) x++; x++; x++; into x+=3;, the location views
extension [26] allows the debugger to step over the elided
states. This requires the debugger to track state that the
object program does not, roughly as ‘fractional program
counter’ values. By this approach, any statically enumerable
straight-line sequence of states that have folded to a single
object program state can be reconstructed in the debugger.
However, it can not reconstruct a branching computation
(if (x % 2) x--; becoming x &= ~1) nor a sequence of
data-dependent length (e.g. after ‘arithmetic progression’ op-
timisation eliminating a summation for-loop). These would
be useful test cases for a fully realised residual state approach.

Entry Values. A common debugging need is to see a value
as it was on entry to a call, noting that the current value may
have changed. This motivated the specification of a Dwarf
operation DW_OP_entry_value whose specification is that
it materialises such an ‘entry value’ on the stack—without
saying how this is done. We do not know of a debugger
which currently implements it in non-trivial cases, but the
vagueness of the specification alludes to the possibility of
additional state being kept to support the operation in other
cases. Indeed, an omniscient debugger could already do so.

Knowledge Extension (a.k.a. Eviction Recovery). By
analogy with all-knowing ‘omniscience’, an enhanced
‘knowledge-extending’ debugger was hypothesised in our
recent paper about how to measure debug info’s coverage
of local variables [28]. This debugger would retain certain
local variables for longer than the object program does; we
noted as follows.

a hypothetical debugger could be imple-
mented today that performs this knowl-
edge extension, by saving a variable’s
value at its last moment of knowability. . .

This envisages a state-saving mechanism based on hid-
den breakpoints, set at the last instruction(s) where a value
is available. In that paper, this technique was merely simu-
lated as a way to calculate the coverage gains it could enable.
We later discovered that Tice [29] implemented exactly this
technique in the Optdbx debugger (based on SGI dbx) and
noted the performance trade-off faced especially when us-
ing conventional slower (trap-based) breakpoints.3 A fast
implementation would likely improve on this using some
mixture of fast breakpoints [18], input-recording and parallel-
analysis techniques—although even the slower implementa-
tion would still only cause slowdown on demand, and would
3There it was called ‘eviction recovery’—although we prefer to reserve
‘recovery’ for stateless pure functions, consistent with our framing earlier
that contrasted ‘recovery’ with stateful ‘residual computation’.

usefully allow a deployed, fully optimised binary to be much
more debuggable than at present. (This contrasts with how
the LLVM community has recently proposed a reduction in
optimisation as the default for the -Og optimisation level.4
Although incurring only minor slowdown, the slowdown
affects all runs of the deployed binary. Breakpoint-based
communication overheads, by contrast, although typically
greater, are incurred only when attached or enabled—this is
the same trade-off adopted by DTrace’s ‘probes’ design [7].)

Learning fromHardware. State dropped can be compen-
sated by state kept. Modern high-performance CPUs exploit
this, in order to residualise code motion perfectly: despite
performing copiously out-of-order execution internally, a
trap at any instruction will expose the registers in a sequen-
tially consistent state, having been ‘fixed up’ on the trap
using information kept in the CPU’s reorder buffer. The dis-
tinction between ‘precise’ and ‘imprecise exceptions’ was a
central feature of the 1967 algorithm of Tomasulo [32]. Re-
order buffers [27] hold the state necessary to add to present
the precise illusion (also allowing rollback of speculative
executions). It would appear that a stateful debugger could
residualise code motion, and any other state-dropping op-
timisation, by retaining the state in an analogous way. For
example, a stateful debugger might include the equivalent
of a reorder buffer: tracking ‘source constructs in flight’, re-
taining the necessary amount of past state, and using this
to provide the illusion of source-level ‘precise interrupts’,
such that pending operations were rolled back and a fully
consistent source state were always shown.

8 Correct Modulo Temporal Imprecision
As a consequence of defining a mapping at every instruction,
yet permitting the compiler to perform any code motion
within the input/output behavioural envelope, current debug
info is temporally imprecise. The interrupt-inspired solution
we just sketched is an ambitious goal that would require
extensive newDwarfmetadata describing what state to save.
Instead, an intermediate solution would be to define a partial
correctness property that factors out temporal imprecision
and detects only other infidelities, such as outright incorrect
or missing information. Such a property would be expected
to hold even under the imprecise, artificially dense ‘full-
instruction’ mapping of existing debug info, and would fix a
‘mapping height’: at source level, modulo allowable temporal
imprecisions. Such a property would provide an automatable
test oracle useful for catching incidental fidelity problems
in compiler-generated debug info. In order to sidestep the
ill-posedness we remarked on earlier, we accept that such a
property will necessarily be both specialised and partial.
In this section we sketch such a property and why we

believe it can be the basis of an automatable test oracle for
4See https://discourse.llvm.org/t/rfc-redefine-og-o1-and-add-a-new-level-
of-og/72850 as retrieved on 2024/9/1.

https://discourse.llvm.org/t/rfc-redefine-og-o1-and-add-a-new-level-of-og/72850
https://discourse.llvm.org/t/rfc-redefine-og-o1-and-add-a-new-level-of-og/72850

Source-Level Debugging of Compiler-Optimised Code: Ill-Posed, but Not Impossible Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

debug info. Our property concerns all source variables, and
expects full fidelity in the view of them that the debug info
offers—modulo, of course, the temporal imprecision that is
permitted. We introduce the property by returning to our
example from earlier and considering some less ‘convenient’
optimisations that perform code motion.

8.1 Per-Variable Histories
The property is one we have already witnessed: in Fig. 4 and
Fig. 5, the right-hand part of the figure showed a concrete his-
tory of values for a single variable (in this case i). Although
not shown, we can also consider the arcs of this history to
be labelled with the source coordinates where each update
occurs, according to debug info, thereby testing both line
and value information (§3).

Our property is simply that the histories observed for all
local variables, on any given execution, are the same as in
the source (or unoptimised) program. In other words, in the
optimised code as viewed through its debug info, each source
variable is seen individually to progress through the same
sequence of values as in the source program, including that
each change of value occurs at the correct source file and line.
It does not capture any kind of coherence across variables.

8.2 Optimisations Tolerated
The property is invariant under dead code elimination (it
concerns only reachable paths). It is also invariant under
common subexpression elimination (CSE) since by definition
subexpressions output to temporaries rather than source
variables. If two source variables are themselves commoned
(merged), they are can remain distinct in debug info (but still
share machine state). Code folding, such as our x++ example,
must be residualised by location views in order to recover
folded assignments (the x+=3 substitution). This does mean
we expect to flag as missing any assignments occurring in
eliminated branching control flow, such as our x&=1 example.
We view this as an incidental limitation of current Dwarf
and therefore fair to report as a bug.

Note that the property is not affected by dropping of dead
local variables, such as by a register allocator, because the
history consists of assignment events; it does notmatter if the
assigned value is eliminated later on becoming dead. If the
assignment is elided entirely, because it is never read (or read
only by folded or CSE’d code), we expect it to be residualised
by a location view (recalling §7); our hypothesised tool will
flag a problem if the intermediate state is not made visible
in this way. A flip side is that our property does not capture
whether a given assignment remains available for its full
source-level lifetime. Debug info which drops a variable
‘early’ would arguably be a missed bug—although subject
to the knowledge extension or ‘eviction recovery’ solutions
mentioned earlier (§7) and already captured reasonably well
by a coverage metric we have defined in earlier work [28].

Since each variable is checked individually, code motion
is tolerated: if one variable’s assignments are hoisted or sunk
past another’s, each variable’s individual history graph is
unchanged. In this way, the compiler gains a lot of latitude
in code scheduling, but may still be held to a high standard
of debug info.
Although the property is also not affected much by con-

trol state dropping, such as merging identical code paths,
the matching of source coordinates may need to be fuzzy in
order to accommodate ‘control merging’ (§5). Again, this is
a limitation of current Dwarf. Both alternation-based fuzzi-
ness (‘either at line 3 or line 10’) and range-based fuzziness
(‘between lines 5 and 7’) appear necessary in practice.

8.3 Optimisations Barely Tolerated
What about all the other compiler optimisations? We now
consider one that does not respect the property. Fig. 7 shows
a loop fusion transformation applied to our example from
earlier. This has truncated the history of local variable i,
since it no longer progresses through the index sequence of
the second loop. (There is now only one loop!) Brender et al.
[6] again provide a pithy insight.

A variable is said to have split lifetimes
if [its] set of fetches and stores . . . can be
partitioned such that none of the values
stored in one subset are ever fetched in
another subset. When such a partition ex-
ists, the variable can be ‘split’ into several
independent ‘child’ variables. . .

The context of the quotation was to motivate debug info
that can capture independent allocation, also known as ‘wan-
dering variables’, where a variable moves among many lo-
cations in its lifetime. An extreme kind of partitioning (al-
beit semantically different from that described) is the well-
known Static Single Assignment (SSA) form, where a dis-
tinct ‘subvariable’ is created at each assignment. Whereas
the SSA transformation can be seen as ‘breaking to remake’
the source program’s structure, our desired subvariable prop-
erty is as quoted above, and mirrors debugging in seeking
instead to preserve the source structure—relaxing to break it
‘just enough’ to match legitimate code motion, and accepting
the detriment to debug-time temporal precision. Only a very
particular kind of code motion requires this relaxation at
all: when assignment to a ‘subvariable’ is moved past that
to another subvariable of the same origin variable. When
two such peer ‘subvariables’ are scheduled independently by
the compiler in this way, the origin variable’s history may
become ‘interleaved with itself’, meaning its source-level his-
tory is not preserved. However, separating the subvariables
disentangles this interleaving; we do still expect to see each
subvariable’s history preserved. Fig. 8 illustrates. This case of
code motion is somewhat uncommon because more often, a

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Stephen Kell and J. Ryan Stinnett

1 int f(int *data, void *arg)
2 {
3 int i = 0, tmp, out1 = 0, out2 = 0;
4
5 i = tmp = get_start(arg); int *p = &data[tmp];
6 for (; i < MAXp < &data[MAX]; ++ip)
7 {
8 out1 ^= data[i]*p;
13 out2 &= data[i]*p;
9 }
11 for (i = tmp; i < MAX; ++i)
12 {
13 out2 &= data[i];
14 }
15 g(out1, out2);
16 return tmp;
17}

data: in r1 at all points

arg: in r2 at all points

i: value 0 from 3 to 5
 value (r7-r1)/4
 from 5

tmp: in r4 from 5

out1: in r5 from 3

out2: in r6 from 3

local location or
value

range

data in r1 at all points
arg in r2 at all points
i value 0 from 3 to 5

value (r7-r1/4) from 5
tmp in r4 from 5
out1 in r5 from 3
out2 in r6 from 3
p in r7 (synthetic)

2

3 4 5

0 value 0 from 3 to 5
value (r7-r1)/4
 from 5

Figure 7. Left: adding a loop fusion optimisation to the code of Fig. 6. Middle: one plausible but problematic version of the
debug info (same as Fig. 6). Right: the truncated source-level concrete history of variable i recovered using this (unchanged)
debug info. Orange denotes residual artifacts.

1 int f(int *data, void *arg)
2 {
3 int i = 0, tmp, out1 = 0, out2 = 0;
4
5 i = tmp = get_start(arg);
6 for (; i < MAX; ++i)
7 {
8 out1 ^= data[i];
9 }
10
11 for (int j = tmp; j < MAX; ++j)
12 {
13 out2 &= data[j];
14 }
15 g(out1, out2);
16 return tmp;
17}

0

2

3 4 5

3 4
2

5

local location or
value

range

data in r1 at all points
arg in r2 at all points
i (1) value 0 from 3 to 5

value (r7-r1/4) from 5
i (2) as j value 0 from 3 to 5

value (r7-r1/4) from 5
tmp in r4 from 5
out1 in r5 from 3
out2 in r6 from 3
p in r7 (synthetic)

1 int f(int *data, void *arg)
2 {
3 int i = 0, tmp, out1 = 0, out2 = 0;
4
5 i = tmp = get_start(arg);
6 for (; i < MAX; ++i)
7 {
8 out1 ^= data[i];
9 }
10
11 for (int j = tmp; j < MAX; ++j)
12 {
13 out2 &= data[j];
14 }
15 g(out1, out2);
16 return tmp;
17}

0

2

3 4 5

3 4
2

5

Figure 8. Left: the example code again, but with a substitution of j as a ‘sub-variable’ of i. After optimisation (not shown here)
the two loops are still fused. Right: the two per-subvariable histories for subvariables of the original i, now i and j, restoring
the source-level correspondence. Middle: a ‘subvariable’-aware version of the debug info, showing that i and j are modelled
simultaneously by the same object program state. Their separate identities ensure their histories are calculated separately, and
the debug-correctness property can be expected to hold of the loop-fused code. The new subvariable is shown in green.

variable will be assigned a new value that depends on its pre-
vious value. It is the lack of such a dependency that enables
the loop fusion in this example, despite the re-use of i. In-
deed a more idiomatic version of the second loop would use
a fresh index variable, say j, rather than re-use i from earlier,
effectively performing the subvariable transformation in the
original source.

8.4 Optimisations Not Tolerated
Are there examples of transformations that intentionally do
not satisfy our property? One such is loop tiling. Consider a
nest of two loops iterating over a potentially large amount
of data.

int total = 0; unsigned i, i;

for (i = 0; i < big_number; ++i)

{

for (j = 0; j < another_big_number; ++j)

{

total += a[j][i];

}

}

This code models a classic inefficiency relative to C’s row-
major layout of a rectangular array. The code will visit mem-
ory in a strided fashion, accessing one element from a row
and then moving to the next row which is distant in mem-
ory, eventually returning to visit the second column position
of the first row, and so on. This could generates the (𝑖, 𝑗)

Source-Level Debugging of Compiler-Optimised Code: Ill-Posed, but Not Impossible Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

(column–row) sequence (0, 0), (0, 1), (0, 2), . . . , (1, 0), (1, 1),
and so on, where i progresses monotonically up whereas
j visits a given index value many times. A compiler could
‘block’ or ‘tile’ the two loops so that array elements are vis-
ited in a more cache-optimal order: (0, 0), (1, 0) and so on.
Under plausible debug info for i and j, it would be j that
progresses monotonically up and i that visits its values many
times. If the object program is transformed in this way, there
is no way to recover i or j such that they progress through
the same sequence of values as in the source program. Things
simply happen in another order in the transformed program.
In such cases it would be preferable for the compiler to flag
the intentional omission of one or both of these variables.
Since it’s inherent to the optimisation that the index variable
is destroyed—it is no longer modelled in the object program—
one sensible outcome might be for a debugger to find this
recorded in metadata, so that it can display a helpful message,
(‘variable expressly removed by compiler pass tile’) rather
than the current untrustworthy guess (‘variable optimized
out?’). An automated test would expect this explicit meta-
data, or, on its absence, flag the apparent failure to recover i
or j.
Of course, all this simply revives the trade-off we claim

can be eliminated: the optimised code is less debuggable.
To correct this, we require stateful residual computation:
the entire original (untiled) loop order would be emitted
residually. In this way, the programmer could still optionally
observe execution progressing the unoptimised way, and
the view of execution would rejoin the ‘base’ (optimised)
execution at a subsequent mapping point. The trade-off is
that the user has observed a substantially different execution
to what actually occurred in the base program. Assuming
the user sought to understand the meaning of their code, this
switch is appropriate. If theywished instead to understand its
cache behaviour, it would not be. Hence we come back to the
ill-posedness of the ‘source-level debugging’ problem: each
tool, user or bug may have different requirements. However,
multiple views can be made available at once; we need not
fix just one, and need not choose ahead of time.

8.5 Practical Experience
Although ill-posedness means there are many ‘right answers’
to what debug info could be called correct, there are also
plenty of wrong answers. Compilers frequently generate
them! Unlike miscompilation bugs of the kind caught with
the help of Csmith [34] and similar tools, which are usually
the result of many compute-hours spent hammering the
compiler with unusual programs, incorrect or incomplete
debug info is simply the norm. We believe this is familiar to
most developers who debug the optimised output of GCC,
LLVM or similar compilers. Although the viability of our
property as an automated test oracle remains a hypothesis,
our experience to date includes building a tool checking a
similar property (a precursor of the one we have described

here). This tool has significant power to find confirmed bugs
in the LLVM compiler. The remaining challenge is to do
this in a precise way that avoids overapproximation, and
therefore provides a low rate of false positive reports—noting
that our property is a dynamic one, over execution traces,
so should only be flagged for feasible executions.

9 Choose Your Illusion
If each tool, user or bug may have different requirements,
how can we state these precisely? Whereas our ‘temporally
imprecise’ property sidestepped many such questions, tack-
ling them is a prerequisite to obtaining any thorough assur-
ance about debugging infrastructure. We also believe it is
likely to illuminate better debugging tool designs and more
usable and reliable compilers.

Levels of Illusion. Past work has identified ‘truthful’ ver-
sus ‘expected’ as a binary distinction between approaches to
source-level debugging [35]: a debugger can either provide a
‘truthful’ view, reflecting object code behaviour (but perhaps
projected opportunistically up to source level where pos-
sible), or it may provide an ‘expected’ view that directly
mirrors a naive implementation of the source language.
Toolchains largely adhere to the ‘truthful’ model, whereas
virtual machines use dynamic deoptimisation to achieve the
‘expected’ view. In effect we are motivating a more fine-
grained and specific framing: which source program proper-
ties need to be preserved in a given debug-time view, and
conversely, which object program properties?

The closest specifications of such properties we are aware
of are memory models for languages and architectures, such
as the C++ memory model [3]. In the case of limiting code
motion, it seems likely that some ideas can be lifted directly:
our per-variable property is essentially a ‘needlessly partial’
partial order on updates, retaining only the edges connecting
accesses to a given variable (and even then allowing splitting
to ‘subvariables’ when a certain partitioning was feasible).
A debugging tool that can switch between such multiple

‘illusions’ at debug time largely refines existing features for
switching language: the ‘bottom-most’ illusion is only of
assembly-level debugging, and the ‘top’ of a perfect naïve
source view. A valid ‘intermediate’ debug-time view of exe-
cution might preserve some properties from the optimised
object program and some from the naive source semantics.
For example, a user may wish to see or not see compila-
tion artifacts of multi-instruction stores (e.g. the ‘adjacent
data’ scenario described by Boehm [5, §4.2]), may wish to
follow or not follow folded or CSE’d control flow, may wish
to remember program-dead local variables or not (noting the
on-demand slowdown for enabling this) and so on.

Compiler Shifts. As optimised and unoptimised executions
diverge, we cannot preserve both at once, in the sense of
observing a single execution faithful to both. We have relied

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Stephen Kell and J. Ryan Stinnett

heavily, however, on the possibility of switching between
multiple views. To a debugger user, a ‘default setting’ that
errs on the source-level side is likely to suffice in common
cases; non-defaults might suit advanced users working with
performance-sensitive workloads, those hunting compiler
bugs, and so on. An important wider motivation for charac-
terising these ‘intermediate illusions’, however, could be to
achieve a shift from characterising degrees of optimisation
in terms of what passes are performed, instead into terms of
how far the object program is allowed to stray from a naïve
source semantics—both in what it does at the object level,
and what it can be observed to do at debug time (perhaps
with the help of residual computation).

This is not merely a debugging concern; to systems pro-
grammers, it affects programs’ semantic correctness, espe-
cially at the ‘edges’ of a language where memory and/or
assembly code are used for communication with hard-
ware or other-language code. Current approaches offer
workarounds rather than solutions: a compiler officially
holds only the input/output behaviour sacred, but the user
may still tweak the active passes, or add compilation op-
tions (e.g. -fno-strict-aliasing)—in the hope that these
changes add up to the particular effect they require (e.g. to tol-
erate type-violating aliasing that is intentionally present in
their code) but with no guarantee. The existence of volatile
in C is testament to this: it is essentially an inhibitor of
optimisations, limiting the compiler to a naïve execution
semantics, the ‘abstract machine’. The shift we seek is spec-
ifying optimisations not pass-by-pass but as an envelope.
This would be a major shift among compiler implementa-
tions, but plenty of motivation for this is already well-known
especially in real-time, safety-critical and cryptographic (e.g.
timing-sensitive, zeroing-sensitive) use cases. Such users
often fall back on ‘big-hammer’ restrictions, such as ‘use
only a certified compiler’ or even ‘program only in assem-
bly code’, precisely owing to compilers’ lack of contractual
optimisation envelopes.

10 Related Work
Our discussion so far has surveyed much prior work; we
briefly mention some further notable work here.

The earliest research into debugging optimised programs
takes the general approach of propagating additional map-
ping information through the compiler [10, 16]. The value
expressions (§3) of DWARF version 3 [9] and similar formats,
extend this idea further, by allowing arbitrary functions to be
computed in the debugger to recover values eliminated from
the object program. This escalation in expressiveness was
only later met (partially) with improved testing approaches,
such as Dexter [4] used in the LLVM codebase, a system
for manually annotating test cases with expected debugger-
visible states.

Certain forms of automated testing have been proposed.
The ‘actionable programs’ technique [19] generates many
program variants, each selectively inhibiting optimisations at
some point by adding an optimisation-inhibiting printf-like
output action for many combinations of variables and source
coordinates, then automatically driving a debugger to check
agreement between less-optimised and more-optimised vari-
ants. The narrow range of these variants limits the depth of
testing. Another approach [12] collects ‘debugging traces’ by
single-stepping unoptimised and optimised binaries; ‘trace
invariants’ are in effect a sanity cross-check of line, frame,
variable scope, and function argument information, ensuring
metadata is plausible but only providing a weak correctness
property. The ‘conjectures’ technique [1] avoids the need for
an oracle by seeking to instead find bugs via three heuristics,
two reflecting ABI constraints on separate compilation (call
sites and global linkage) and one that a variable’s debug-
availability should only decrease over each live range (re-
flecting a transition from live to dead but not vice-versa) This
heuristic approach offers a useful ‘lower bound’ of debug
info sanity.

11 Conclusions
Beliefs about debugging infrastructure arise as much from
folklore as from analysis, just as its technologies arise as
much from happenstance and accretion as from design. We
have sought to correct a common perception that optimi-
sation and debuggability necessarily negate one another,
in favour of more nuanced views. These include that state-
dropping, not ‘optimisation’ per se is what necessarily lessens
debuggability, that state recovery and retention techniques
are known, that new ones are possible, and therefore that
fixed optimisation ‘levels’ and concomitant debugging penal-
ties are not necessary. They can be supplanted by a more
flexible system of dynamic mappings and opt-in communi-
cation overheads, not unlike dynamic deoptimisation but
exceeding its range of debug-time views.

While we have shown also that these concepts are largely
proven in one system or another, making them widely avail-
able brings technical problems of its own. Improving the
testable quality of debugging metadata is one obvious place
to push, and we have outlined one direction for doing so.
Lessening the burden of metadata creation is a wider prob-
lem than testability, and goes potentially deep into compiler
design; we have argued that residualisation not elimination is
a lens that could be applied in optimisations from the ground
up, and that the user-facing contract of optimisation would
be better captured as properties of ‘allowable envelopes’ than
a list of passes applied.
Analogies with hardware have informed our views, we

used the mental models of concurrency. However, we have

Source-Level Debugging of Compiler-Optimised Code: Ill-Posed, but Not Impossible Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

mostly ignored concurrent hardware and concurrent pro-
grams. That is mainly because sequential debugging infras-
tructure is already gnarly enough! However, it is significant
that arguably the area of greatest recent practical advance,
record–replay, has been described as ‘skirting the edge of
feasibility’ on much current hardware [25], requires inciden-
tal performance sacrifices even so, and is impossible on other
hardware (ARM). This owes, broadly speaking, to omissions
of observability in hardware concurrency primitives. This
should be a call to action: just as infrastructure design can
provide impressively strong debuggability properties at some
turns (e.g. noting precise exceptions even on out-of-order
CPUs), it can be alarmingly weak at others. Good designs
rest on careful co-design of software infrastructure, compil-
ers and other tools, with debugging firmly in mind—not as a
bringer of unwanted compromise, but as an essential facility
for the mortal programmer.

Acknowledgments
The authors are grateful to the many people who have com-
mented on presentations of this and related material, includ-
ingAdrian Prantl, John Regehr,Michael Norrish,MikeDodds,
Thomas Sewell, Peter Sewell, Al Grant, Robert O’Callahan
and Kyle Huey. This work was supported by the Engineering
and Physical Sciences Research Council (EPSRC) via grant
EP/W012308/1.

References
[1] Cristian Assaiante, Daniele Cono D’Elia, Giuseppe Antonio Di Luna,

and Leonardo Querzoni. 2023. Where Did My Variable Go? Poking
Holes in Incomplete Debug Information. In Proc. of ASPLOS ’23. https:
//doi.org/10.1145/3575693.3575720

[2] Théophile Bastian, Stephen Kell, and Francesco Zappa Nardelli. 2019.
Reliable and Fast DWARF-based Stack Unwinding. PACMPL 3, OOP-
SLA (Oct. 2019), 146:1–146:24. https://doi.org/10.1145/3360572

[3] Mark Batty. 2014. The C11 and C++11 Concurrency Model. Ph. D.
Dissertation. University of Cambridge.

[4] Greg Bedwell. 2018. Measuring the User Debugging Ex-
perience. Presented at European LLVM Developers’ Meet-
ing. https://llvm.org/devmtg/2018-04/slides/Bedwell-Measuring_the_
User_Debugging_Experience.pdf

[5] Hans-J. Boehm. 2005. Threads Cannot Be Implemented as a Library.
In Proc. of PLDI ’05. https://doi.org/10.1145/1065010.1065042

[6] Ronald F. Brender, Jeffrey E. Nelson, and Mark E. Arsenault. 1998. De-
bugging Optimized Code: Concepts and Implementation on DIGITAL
Alpha Systems. Digital Technical Journal 10, 1 (1998), 81–99.

[7] Bryan M. Cantrill, Michael W. Shapiro, and Adam H. Leventhal.
2004. Dynamic Instrumentation of Production Systems. In Proc. of
USENIX ATC ’04. https://www.usenix.org/legacy/publications/library/
proceedings/usenix04/tech/general/cantrill.html

[8] Jim Chow, Tal Garfinkel, and Peter M. Chen. 2008. Decoupling
dynamic program analysis from execution in virtual environments.
In USENIX 2008 Annual Technical Conference (ATC’08). USENIX
Association, Boston, MA. https://www.usenix.org/conference/2008-
usenix-annual-technical-conference/decoupling-dynamic-program-
analysis-execution

[9] DWARF Debugging Information Format Committee. 2005. DWARF
Debugging Information Format version 3. Free Standards Group.

[10] Deborah S. Coutant, Sue Meloy, and Michelle Ruscetta. 1988. DOC: A
Practical Approach to Source-Level Debugging of Globally Optimized
Code. In Proc. of PLDI ’88. https://doi.org/10.1145/53990.54003

[11] David Devecsery, Michael Chow, Xianzheng Dou, Jason Flinn,
and Peter M. Chen. 2014. Eidetic Systems. In Proc. of OSDI
’14. https://www.usenix.org/conference/osdi14/technical-sessions/
presentation/devecsery

[12] Giuseppe Antonio Di Luna, Davide Italiano, Luca Massarelli, Sebastian
Österlund, Cristiano Giuffrida, and Leonardo Querzoni. 2021. Who’s
Debugging the Debuggers? Exposing Debug Information Bugs in Opti-
mized Binaries. In Proc. of ASPLOS ’21. https://doi.org/10.1145/3445814.
3446695

[13] DWARF Debugging Information Format Committee. 2017. DWARF
Debugging Information Format: Version 5. https://dwarfstd.org/doc/
DWARF5.pdf

[14] Jakob Engblom. 2012. A review of reverse debugging. In Proceedings
of the 2012 System, Software, SoC and Silicon Debug Conference. IEEE,
1–6.

[15] GDB Project. 2009. GDB and Reverse Debugging. Web page.
Snapshot dated 2009/9/6, archived at https://web.archive.org/web/
20100127100159/http://sourceware.org/gdb/news/reversible.html as
retrieved on 2024/9/2.

[16] John Hennessy. 1982. Symbolic Debugging of Optimized Code.
TOPLAS 4, 3 (July 1982), 323–344. https://doi.org/10.1145/357172.
357173

[17] Urs Hölzle, Craig Chambers, and David Ungar. 1992. Debugging
Optimized Code with Dynamic Deoptimization. In Proc. of PLDI ’92.
https://doi.org/10.1145/143095.143114

[18] Peter B. Kessler. 1990. Fast Breakpoints: Design and Implementation.
In Proc. of PLDI ’90. https://doi.org/10.1145/93542.93555

[19] Yuanbo Li, Shuo Ding, Qirun Zhang, and Davide Italiano. 2020. Debug
Information Validation for Optimized Code. In Proc. of PLDI ’20. https:
//doi.org/10.1145/3385412.3386020

[20] Nuno P. Lopes, Juneyoung Lee, Chung-Kil Hur, Zhengyang Liu, and
John Regehr. 2021. Alive2: Bounded Translation Validation for LLVM.
In Proc. of PLDI ’21. https://doi.org/10.1145/3453483.3454030

[21] Julia Menapace, Jim Kingdon, and David MacKenzie. 2017. The ‘stabs’
debug format. Online documentation. Available at https://sourceware.
org/gdb/current/onlinedocs/stabs.pdf as retrieved on 2024/9/2.

[22] Microsoft Corporation. 1995. CodeView 4 Symbolic Debug Information
Specification. Product documentation.

[23] George C. Necula. 2000. Translation Validation for an Optimizing
Compiler. In Proc. of PLDI ’00. https://doi.org/10.1145/349299.349314

[24] Robert O’Callahan, Kyle Huey, Devon O’Dell, and Terry Coatta. 2020.
To Catch a Failure: The Record-and-Replay Approach to Debugging:
A discussion with Robert O’Callahan, Kyle Huey, Devon O’Dell, and
Terry Coatta. Queue 18, 1 (March 2020), 61–79. https://doi.org/10.
1145/3387945.3391621

[25] Robert O’Callahan, Chris Jones, Nathan Froyd, Kyle Huey, Albert
Noll, and Nimrod Partush. 2017. Engineering Record and Replay for
Deployability. In Proc. of USENIX ATC ’17. https://www.usenix.org/
conference/atc17/technical-sessions/presentation/ocallahan

[26] Alexandre Oliva. 2010. Consistent Views at Recommended Break-
points. In Proc. of GCC Summit. 6. https://www.fsfla.org/~lxoliva/
papers/sfn/gcc2010.pdf

[27] J.E. Smith and A.R. Pleszkun. 1988. Implementing precise interrupts
in pipelined processors. IEEE Trans. Comput. 37, 5 (1988), 562–573.
https://doi.org/10.1109/12.4607

[28] J. Ryan Stinnett and Stephen Kell. 2024. Accurate Coverage Metrics
for Compiler-Generated Debugging Information. In Proc. of CC ’24.
https://doi.org/10.1145/3640537.3641578

[29] Caroline Tice. 1999. Non-Transparent Debugging of Optimized Code.
Ph. D. Dissertation. University of California, Berkeley. https://
digitalassets.lib.berkeley.edu/techreports/ucb/text/CSD-99-1077.pdf

https://doi.org/10.1145/3575693.3575720
https://doi.org/10.1145/3575693.3575720
https://doi.org/10.1145/3360572
https://llvm.org/devmtg/2018-04/slides/Bedwell-Measuring_the_User_Debugging_Experience.pdf
https://llvm.org/devmtg/2018-04/slides/Bedwell-Measuring_the_User_Debugging_Experience.pdf
https://doi.org/10.1145/1065010.1065042
https://www.usenix.org/legacy/publications/library/proceedings/usenix04/tech/general/cantrill.html
https://www.usenix.org/legacy/publications/library/proceedings/usenix04/tech/general/cantrill.html
https://www.usenix.org/conference/2008-usenix-annual-technical-conference/decoupling-dynamic-program-analysis-execution
https://www.usenix.org/conference/2008-usenix-annual-technical-conference/decoupling-dynamic-program-analysis-execution
https://www.usenix.org/conference/2008-usenix-annual-technical-conference/decoupling-dynamic-program-analysis-execution
https://doi.org/10.1145/53990.54003
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/devecsery
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/devecsery
https://doi.org/10.1145/3445814.3446695
https://doi.org/10.1145/3445814.3446695
https://dwarfstd.org/doc/DWARF5.pdf
https://dwarfstd.org/doc/DWARF5.pdf
https://web.archive.org/web/20100127100159/http://sourceware.org/gdb/news/reversible.html
https://web.archive.org/web/20100127100159/http://sourceware.org/gdb/news/reversible.html
https://doi.org/10.1145/357172.357173
https://doi.org/10.1145/357172.357173
https://doi.org/10.1145/143095.143114
https://doi.org/10.1145/93542.93555
https://doi.org/10.1145/3385412.3386020
https://doi.org/10.1145/3385412.3386020
https://doi.org/10.1145/3453483.3454030
https://sourceware.org/gdb/current/onlinedocs/stabs.pdf
https://sourceware.org/gdb/current/onlinedocs/stabs.pdf
https://doi.org/10.1145/349299.349314
https://doi.org/10.1145/3387945.3391621
https://doi.org/10.1145/3387945.3391621
https://www.usenix.org/conference/atc17/technical-sessions/presentation/ocallahan
https://www.usenix.org/conference/atc17/technical-sessions/presentation/ocallahan
https://www.fsfla.org/~lxoliva/papers/sfn/gcc2010.pdf
https://www.fsfla.org/~lxoliva/papers/sfn/gcc2010.pdf
https://doi.org/10.1109/12.4607
https://doi.org/10.1145/3640537.3641578
https://digitalassets.lib.berkeley.edu/techreports/ucb/text/CSD-99-1077.pdf
https://digitalassets.lib.berkeley.edu/techreports/ucb/text/CSD-99-1077.pdf

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Stephen Kell and J. Ryan Stinnett

[30] Caroline Tice and Susan L. Graham. 1998. OPTVIEW: ANewApproach
for Examining Optimized Code. In Proc. of PASTE ’98. https://doi.org/
10.1145/277631.277636

[31] Frank Tip. 1995. A survey of program slicing techniques. J. Program.
Lang. 3, 3 (1995).

[32] R. M. Tomasulo. 1967. An Efficient Algorithm for Exploiting Multiple
Arithmetic Units. IBM Journal of Research and Development 11, 1 (1967),
25–33. https://doi.org/10.1147/rd.111.0025

[33] Theodore Luo Wang, Yongqiang Tian, Yiwen Dong, Zhenyang Xu,
and Chengnian Sun. 2023. Compilation Consistency Modulo Debug
Information. In Proc. of ASPLOS ’23. https://doi.org/10.1145/3575693.
3575740

[34] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding
and Understanding Bugs in C Compilers. In Proc. of PLDI ’11. https:
//doi.org/10.1145/1993498.1993532

[35] Polle T. Zellweger. 1984. Interactive Source-Level Debugging of Op-
timized Programs. Ph. D. Dissertation. University of California,
Berkeley. https://search.library.berkeley.edu/permalink/01UCS_BER/
1thfj9n/alma991002570669706532

[36] Lawrence Walter Zurawski. 1990. Interactive Source-Level Debugging
of Globally Optimized Code with Expected Behavior. Ph. D. Dissertation.
University of Illinois at Urbana-Champaign.

Received 2024-04-25; accepted 2024-08-08

https://doi.org/10.1145/277631.277636
https://doi.org/10.1145/277631.277636
https://doi.org/10.1147/rd.111.0025
https://doi.org/10.1145/3575693.3575740
https://doi.org/10.1145/3575693.3575740
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/1993498.1993532
https://search.library.berkeley.edu/permalink/01UCS_BER/1thfj9n/alma991002570669706532
https://search.library.berkeley.edu/permalink/01UCS_BER/1thfj9n/alma991002570669706532

	Abstract
	1 Introduction
	2 State Mapping: Two Approaches
	2.1 The Transition System Model
	2.2 Approach 1: Dynamic Deoptimisation
	2.3 Approach 2: In-Toolchain Debug Metadata

	3 Understanding Debug Information
	4 Residual Computation at Work
	5 The Essential Problem: Loss of State
	6 Correct Debug Info: An Ill-Posed Problem
	7 Statefulness Foreshadowed
	8 Correct Modulo Temporal Imprecision
	8.1 Per-Variable Histories
	8.2 Optimisations Tolerated
	8.3 Optimisations Barely Tolerated
	8.4 Optimisations Not Tolerated
	8.5 Practical Experience

	9 Choose Your Illusion
	10 Related Work
	11 Conclusions
	Acknowledgments
	References

