The COMPASS
Multihop Framework for TinyOS

Ryan Stinnett
ECE Department
Rice University

jryans@rice.edu

November 14, 2007

1 Introduction

TinyOS 2.x supplies a well-designed single hop messaging layer for applications,
but there is no standardized multihop framework. To address this issue, we
surveyed a large number of applications [1] to determine the addressing tech-
niques and messaging stack features used in sensor networks. From the results
of this survey, we designed a multihop networking API [2] to address the needs
of application designers at the messaging layer in a unified way.

This framework [3] intends to implement that API. The key goals of this
include:

e Multihop routing with several addressing modes based on:
— Node address (single node, multiple nodes, or a list of nodes)
— Geographical region

— Device hierarchy

Intercept messages to be forwarded

Control transmission effort

e Congestion management
e Support self-organized device hierarchies

Our design allows application designers to focus on the application layer
without being bogged down by the details of routing protocol implementation.
Similarly, routing protocol designers can make their improvements more acces-
sible to the rest of the community since only a few wiring changes are needed to
alter the routing protocol used by a given addressing mode, leaving application
code untouched.

In its current form, the framework implementation supports addressing and
multihop routing by a single node address. Our version of Dynamic Source
Routing (DSR) [4] modified for TinyOS is used as the routing layer.

This document summarizes the key components in the framework. Section 2
describes the components needed to take advantage of this system in your own
application. Section 3 delves into the internal components of the framework and
how they work together. For more detailed information, consult the framework’s
HTML source code documentation [5].

2 Using the Framework in Applications

The single hop messaging layer [6] provided by TinyOS 2.x, also referred to as
Active Messaging (AM), provides the fundamental components used by nearly
all applications to move data to other nodes within range of a given source
node. It supplies the Send, Receive, and Snoop interfaces for this purpose,
which include the essential commands and events required to send and receive
data to a node’s neighbors. Packets can easily be separated by different packet
types for each application, similar to the use of ports in TCP or UDP.

In an effort to reduce the amount of changes required in existing code, our
multihop layer is used in a similar manner to the AM layer provided with
TinyOS. The application level components and interfaces for sending, receiv-
ing, and manipulating packets of each addressing type are described below.
Only brief descriptions are given for components that are very similar to their
AM counterparts. A packet type is also used during component instantiation
in the current structure, allowing for simple separation of the send and receive
paths for various packet types.

2.1 Single Node Addressing

In this addressing mode, a packet has a single node as its destination, just like
with the AM layer.

2.1.1 Sending

The SingleSenderC component provides the A MSend interface as Send for send-
ing packets. This is the same interface provided by AMSenderC and is used in
the same manner.

2.1.2 Receiving

The SingleReceiverC and SingleSnooperC components provide the Receive in-
terface for receiving packets. This is same interface provided by AMReceiverC
and AMSnooperC and is used in the same manner. SingleReceiverC provides
only those packets whose multihop destination is the current node, whereas Sin-
gleSnooperC provides any packets whose multihop destination is not the current
node.

Application

send receive

| Addressing Mode |

send (

Packet Engine

receive

receive

Figure 1: Simplified view of internal components

2.1.3 Packet Manipulation

All of the above Single *C components also provide a new interface, Single Packet,
for reading and writing the multihop source and destination of a given packet.
This is especially helpful if you are buffering packets, since you may no longer
be within the context of the send command or receive event, where these fields
are simpler to access.

The AM layer packet interface, AMPacket, is also provided, mainly for the
address command. The AM layer fields in a packet should generally not be
modified at the application layer, nor should they need to be in any case.

3 Framework Internals

This section is primarily of interest to those who would like to extend the frame-
work itself or adapt additional routing protocols to work with it. If you are only
interested in making use of multihop communication in your applications, then
you should be able to do so with just the information from Section 2.

The various internal components of the framework can divided into a num-
ber of groups. Figure 1 shows a simple diagram of how these groups fit together.
As usual, more complete diagrams are available within the source code docu-
mentation. Each group is described below, along with the interactions between
the basic framework and available routing protocols. This discussion uses single
node addressing and DSR as an example, so a basic knowledge of the operation
of DSR may be helpful prior to reading this section.

3.1 Addressing Mode

Each addressing mode (single node, geographical, etc.) has its own set of send-
ing, receiving, and processing components. While this does result in a large
number of components in the end, it allows application developers to clearly

specify the way they intend to address their multihop packets. Also, most of
the addressing modes differ in the data types used to specify an address, thus
necessitating slightly different interfaces for each.

The sending and receiving components for single node addressing have al-
ready been mentioned in Section 3. These Send and Receive interfaces are
used to move packets between the application and the addressing mode compo-
nents. There are also additional lightweight components that implement read
and write operations on the packet fields that are specific to the particular ad-
dressing mode in use. A packet’s multihop source would be one example of such
a field.

3.2 Packet Engine

Moving down the chain from the addressing mode brings us to PacketEngineC,
a generalized “packet engine”. I borrowed this term from a similar component
in the TYMO (DYMO for TinyOS) [7] implementation. Essentially it’s a fancy
name for an intelligent packet queue or buffer. This centralizes packet storage
and management in one location and simplifies routing protocol development
because these pieces do not need to reinvented each time.

All packets coming down from the addressing mode layer and up from the
AM layer are stored in a buffer. If there is a routing protocol (such as DSR)
associated with the type of packet, then the protocol’s component is notified of
the new packet and also the method through which it entered the buffer. No
immediate response to this notification is needed. If there is no routing protocol
for a given packet type, then the packet is dropped from the buffer.

Once the routing component has been notified that a given packet has en-
tered the buffer, it is free to reply with any of several actions to for the buffer
take on that packet, such as sending (down to the AM layer), send with in-
terception (application layer can block or modify packet), receiving (up to the
application layer), and silently dropping. Both the send and send with intercep-
tion actions are queued since they must first wait for the radio to be free. There
is also a short, randomized delay between successive transmissions to reduce the
probability of collisions.

The notification events and action commands are all contained within the
interface PacketEngine. This is the main mode of communication between a
routing component and the rest of the framework. Since the notification/action
strategy used by this buffer does not force routing components to make decisions
immediately, they are free to do a reasonable amount of processing as long as
the buffer does not fill up.

3.3 Routing

In this framework, there are typically two kinds of triggers that will initiate
some kind of processing in routing components:

e notification from the buffer of a new packet or

e expiration of a timer.

For example, DSR makes use of the notification of a packet waiting to be sent to
search for a route to the packet’s final destination in its route cache. If no route
is found, then route discovery is initiated in an attempt to find one by sending
out route request packets. Timers are also involved here as well. If no route
has been found after a set amount of time, then the route discovery process is
initiated again. Of course, this is a simplified description of only one portion of
the overall protocol, which involves many other triggers like these.

While at first it may seem like a better idea to tightly integrate the buffer
with the routing component, separating the two actually simplified our imple-
mentation of DSR by allowing us to focus on the core of the routing algorithm
without being bogged down by tedious buffer management in the same compo-
nent. Also, the routing component is free to modify packet headers and other
information before send a command back to the buffer. Thus, nearly all of the
complex processing that one would have done in an integrated design can be
done within this framework as well.

References

[1] R. Wagner, M. Duarte, J. R. Stinnett, T. S. E. Ng, D. B. Johnson,
and R. Baraniuk, “A network API-driven survey of communication
requirements of distributed data processing algorithms for sensor
networks,” Rice University, Tech. Rep., 2006. [Online]. Available:
http://www.ece.rice.edu/~rwagner /IPSN- API-survey.pdf

[2] R. Wagner, J. R. Stinnett, M. Duarte, R. Baraniuk, D. B. Johnson, and
T. S. E. Ng, “A Network Application Programming Interface for Data
Processing in Sensor Networks,” Rice University, Tech. Rep. TREE0705,
Jan. 2007. [Online]. Available: http://www.dsp.rice.edu/~rwagner/docs/
wagnerTREEQ705.pdf

[3] The COMPASS Multihop Framework for TinyOS. [Online]. Available:
http://www.owlnet.rice.edu/~jryans/framework/

[4] D. Johnson, Y. Hu, and D. Maltz, The Dynamic Source Routing Protocol
(DSR) for Mobile Ad Hoc Networks for IPv4, IETF RFC 4728, Feb. 2007.

[5] The COMPASS Multihop Framework for TinyOS: Source Code Documenta-
tion. [Online]. Available: http://www.owlnet.rice.edu/~jryans/framework/
nesdoc/

[6] P. Levis. Packet Protocols. [Online]. Available: http://www.tinyos.net/
tinyos-2.x/doc/html/tep116.html

[7] R. Thouvenin. TYMO: An implementation of the DYMO protocol on
TinyOS. [Online]. Available: http://tymo.sourceforge.net/

