
J. Ryan Stinnett
🏠 convolv.es

💼 Kingʼs College London

Stephen Kell
🏠 humprog.org

💼 Kingʼs College London

Accurate coverage metrics for
compiler-generated debugging information

EuroLLVM 2024

https://convolv.es
https://www.humprog.org/~stephen/

Debugging example

2

 1 void example() {
 2 int number;
 3
 4 printf("Enter a number: ");
 5 scanf("%d", &number);
 6
 7 int sum = 0;
 8 int i = 1;
 9 while (i <= number) {
10 sum += i;
11 i++;
12 }
13
14 printf("Sum is %d.\n", sum);
15 }

Debugging example

3

 1 void example() {
 2 int number;
 3
 4 printf("Enter a number: ");
 5 scanf("%d", &number);
 6
 7 int sum = 0;
 8 int i = 1;
 9 while (i <= number) {
10 sum += i;
11 i++;
12 }
13
14 printf("Sum is %d.\n", sum);
15 }

Debugging example

4

 1 void example() {
 2 int number;
 3
 4 printf("Enter a number: ");
 5 scanf("%d", &number);
 6
 7 int sum = 0;
 8 int i = 1;
 9 while (i <= number) {
10 sum += i;
11 i++;
12 }
13
14 printf("Sum is %d.\n", sum);
15 }

 7 int sum = 0;
-> 8 int i = 1;
 9 while (i <= number) {
(db) print sum

What will we see…?
Explore value

of sum in
debugger

Debugging example

5

 1 void example() {
 2 int number;
 3
 4 printf("Enter a number: ");
 5 scanf("%d", &number);
 6
 7 int sum = 0;
 8 int i = 1;
 9 while (i <= number) {
10 sum += i;
11 i++;
12 }
13
14 printf("Sum is %d.\n", sum);
15 }

 7 int sum = 0;
-> 8 int i = 1;
 9 while (i <= number) {
(db) print sum

If debug info is present and correct:

sum = 0

Explore value
of sum in
debugger

Debugging example

6

 1 void example() {
 2 int number;
 3
 4 printf("Enter a number: ");
 5 scanf("%d", &number);
 6
 7 int sum = 0;
 8 int i = 1;
 9 while (i <= number) {
10 sum += i;
11 i++;
12 }
13
14 printf("Sum is %d.\n", sum);
15 }

 7 int sum = 0;
-> 8 int i = 1;
 9 while (i <= number) {
(db) print sum

If debug info is present and correct:

sum = 0

Otherwise we may see any of:

sum = <variable not available>
sum = <optimised out>
sum = <garbage value>

Explore value
of sum in
debugger

Debugging example

7

 1 void example() {
 2 int number;
 3
 4 printf("Enter a number: ");
 5 scanf("%d", &number);
 6
 7 int sum = 0;
 8 int i = 1;
 9 while (i <= number) {
10 sum += i;
11 i++;
12 }
13
14 printf("Sum is %d.\n", sum);
15 }

 7 int sum = 0;
-> 8 int i = 1;
 9 while (i <= number) {
(db) print sum

If debug info is present and correct:

sum = 0

Otherwise we may see any of:

sum = <variable not available>
sum = <optimised out>
sum = <garbage value>

Explore value
of sum in
debugger

8

Quick intro to debug info
source instructions line table location exprs

 7 int sum = 0;
 8 int i = 1;
 9 while (i <= number) {

10 sum += i;

11 i++;
12 }

 mov eax, 0
 mov ecx, 1
 cmp eax, 1
 jl .loop_exit
 mov edx, 1
.loop_body:
 mov edi, esi
 mov esi, ecx
 add esi, edi
 add edx, 1
 cmp ecx, eax
 mov ecx, edx
 jl .loop_body
.loop_exit:

ln 7
ln 8
ln 9
ln 9
ln 9

ln 10
ln 10
ln 11
ln 12
ln 12
ln 12

sum: (value 0)
sum: (value 0)
sum: (value 0)
sum: (value 0)
sum: (value 0)
sum: (value 0)
sum: (reg edi)
sum: (reg edi)
sum: (reg esi)
sum: (reg esi)
sum: (reg esi)
sum: (reg esi)
sum: (reg esi)

9

Quick intro to debug info
source instructions line table location exprs

 7 int sum = 0;
 8 int i = 1;
 9 while (i <= number) {

10 sum += i;

11 i++;
12 }

 mov eax, 0
 mov ecx, 1
 cmp eax, 1
 jl .loop_exit
 mov edx, 1
.loop_body:
 mov edi, esi
 mov esi, ecx
 add esi, edi
 add edx, 1
 cmp ecx, eax
 mov ecx, edx
 jl .loop_body
.loop_exit:

ln 7
ln 8
ln 9
ln 9
ln 9

ln 10
ln 10
ln 11
ln 12
ln 12
ln 12

sum: (value 0)
sum: (value 0)
sum: (value 0)
sum: (value 0)
sum: (value 0)
sum: (value 0)
sum: (???)
sum: (???)
sum: (???)
sum: (???)
sum: (???)
sum: (???)
sum: (???)

10

Good properties of a metric

● Goal
○ Find a good debug info coverage metric

to focus compiler efforts on truly missing coverage

● Good coverage metric should be
○ Independent of compiler used, options specified, etc.
○ Possible to achieve 100%
○ Free of anomalies (more on this later)

Debug info coverage challenges

11

 1 void example() {
 2 int number;
 3
 4 printf("Enter a number: ");
 5 scanf("%d", &number);
 6
 7 int sum = 0;
 8 int i = 1;
 9 while (i <= number) {
10 sum += i;
11 i++;
12 }
13
14 printf("Sum is %d.\n", sum);
15 }

Imaginary ideal compiler emits
debug info for entire defined range
of sum

Measure coverage with existing
tools (debuginfo-quality,
llvm-dwarfdump)...

Ideal compiler
measured by
existing tools

Debug info coverage challenges

12

 1 void example() {
 2 int number;
 3
 4 printf("Enter a number: ");
 5 scanf("%d", &number);
 6
 7 int sum = 0;
 8 int i = 1;
 9 while (i <= number) {
10 sum += i;
11 i++;
12 }
13
14 printf("Sum is %d.\n", sum);
15 }

Imaginary ideal compiler emits
debug info for entire defined range
of sum

Measure coverage with existing
tools (debuginfo-quality,
llvm-dwarfdump)...

Ideal compiler
measured by
existing tools

Debug info coverage challenges

13

Imaginary ideal compiler emits
debug info for entire defined range
of sum

Measure coverage with existing
tools (debuginfo-quality,
llvm-dwarfdump)...

Ideal compiler
measured by
existing tools

 1 void example() {
 2 int number;
 3
 4 printf("Enter a number: ");
 5 scanf("%d", &number);
 6
 7 int sum = 0;
 8 int i = 1;
 9 while (i <= number) {
10 sum += i;
11 i++;
12 }
13
14 printf("Sum is %d.\n", sum);
15 }

Sco
112 B

Des
63 B

Debug info coverage challenges

14

Imaginary ideal compiler emits
debug info for entire defined range
of sum

Measure coverage with existing
tools (debuginfo-quality,
llvm-dwarfdump)...

63 / 112 instr. bytes covered
56% coverage

Ideal compiler
measured by
existing tools

 1 void example() {
 2 int number;
 3
 4 printf("Enter a number: ");
 5 scanf("%d", &number);
 6
 7 int sum = 0;
 8 int i = 1;
 9 while (i <= number) {
10 sum += i;
11 i++;
12 }
13
14 printf("Sum is %d.\n", sum);
15 }

Sco
112 B

Des
63 B

Debug info coverage challenges

15

Imaginary ideal compiler emits
debug info for entire defined range
of sum

Measure coverage with existing
tools (debuginfo-quality,
llvm-dwarfdump)...

63 / 112 instr. bytes covered
56% coverage

❌ Independent of compiler
❌ Possible to achieve 100%
❌ Free of anomalies (e.g. stack vs. reg)

Ideal compiler
measured by
existing tools

 1 void example() {
 2 int number;
 3
 4 printf("Enter a number: ");
 5 scanf("%d", &number);
 6
 7 int sum = 0;
 8 int i = 1;
 9 while (i <= number) {
10 sum += i;
11 i++;
12 }
13
14 printf("Sum is %d.\n", sum);
15 }

Sco
112 B

Des
63 B

Existing coverage tools

16

Tools such as debuginfo-quality, llvm-dwarfdump

● Measure in instruction bytes instead of source lines
○ Coverage in bytes is not comparable across compilers

or even different options passed to the same compiler
○ Doesnʼt line up with user experience stepping through source lines

Existing coverage tools

17

Tools such as debuginfo-quality, llvm-dwarfdump

● Measure in instruction bytes instead of source lines
○ Coverage in bytes is not comparable across compilers

or even different options passed to the same compiler
○ Doesnʼt line up with user experience stepping through source lines

● Use scope instead of defined region as denominator
○ Full coverage becomes impossible to achieve with register allocation
○ Accidentally favours unoptimised approach of

placing all variables on the stack

Evolution of our approach

18

19

Our coverage approach

We construct a more accurate coverage metric:

● Measure coverage in terms of source lines
● For each variable, only expect coverage in

the variableʼs defined region

Our coverage approach

20

Def

Imaginary ideal compiler emits
debug info for entire defined range
of sum

Measure coverage with our
approach using source lines in sum
defined region...

Ideal compiler
measured by
our approach

 1 void example() {
 2 int number;
 3
 4 printf("Enter a number: ");
 5 scanf("%d", &number);
 6
 7 int sum = 0;
 8 int i = 1;
 9 while (i <= number) {
10 sum += i;
11 i++;
12 }
13
14 printf("Sum is %d.\n", sum);
15 }

Des

Our coverage approach

21

Def

Imaginary ideal compiler emits
debug info for entire defined range
of sum

Measure coverage with our
approach using source lines in sum
defined region...

8 / 8 source lines covered
100% coverage

✅ Independent of compiler
✅ Possible to achieve 100%
🤔 Free of anomalies

Ideal compiler
measured by
our approach

 1 void example() {
 2 int number;
 3
 4 printf("Enter a number: ");
 5 scanf("%d", &number);
 6
 7 int sum = 0;
 8 int i = 1;
 9 while (i <= number) {
10 sum += i;
11 i++;
12 }
13
14 printf("Sum is %d.\n", sum);
15 }

Des

Coverage achievability

● Other tools (llvm-dwarfdump,
debuginfo-quality) measure coverage
using parent scope which includes points at
which the variable is undefined

● Our approach starts tracking coverage from
point of first definition

● Coverage in terms of source lines instead of
instruction bytes

● Unlike past metrics, full coverage is actually
attainable with our approach

22

Measuring real compilers

23

 1 void example() {
 2 int number;
 3
 4 printf("Enter a number: ");
 5 scanf("%d", &number);
 6
 7 int sum = 0;
 8 int i = 1;
 9 while (i <= number) {
10 sum += i;
11 i++;
12 }
13
14 printf("Sum is %d.\n", sum);
15 }

Def

Real compiler A emits debug info
for its view of sum

Measure coverage with our
approach using source lines in sum
defined region...

6 / 8 source lines in
sum defined region covered

75% coverage

🤔

Real compiler
measured by
our approach

Des

Measuring real compilers

24

 1 void example() {
 2 int number;
 3
 4 printf("Enter a number: ");
 5 scanf("%d", &number);
 6
 7 int sum = 0;
 8 int i = 1;
 9 while (i <= number) {
10 sum += i;
11 i++;
12 }
13
14 printf("Sum is %d.\n", sum);
15 }

Def

Real compiler B emits debug info
for its view of sum

Measure coverage with our
approach using source lines in sum
defined region...

6 / 8 (different!) source lines in
sum defined region covered

75% coverage

🤔

Real compiler
measured by
our approach

Des

Measuring real compilers

25

 1 void example() {
 2 int number;
 3
 4 printf("Enter a number: ");
 5 scanf("%d", &number);
 6
 7 int sum = 0;
 8 int i = 1;
 9 while (i <= number) {
10 sum += i;
11 i++;
12 }
13
14 printf("Sum is %d.\n", sum);
15 }

Def Des

Current compilers only emit debug
info for source lines where
computation happens!

Measuring real compilers

26

 1 void example() {
 2 int number;
 3
 4 printf("Enter a number: ");
 5 scanf("%d", &number);
 6
 7 int sum = 0;
 8 int i = 1;
 9 while (i <= number) {
10 sum += i;
11 i++;
12 }
13
14 printf("Sum is %d.\n", sum);
15 }

Def

Current compilers only emit debug
info for source lines where
computation happens!

After noticing this, we added a
static source analysis pass to find
these lines and then filter coverage
to only lines with computation

Des
Comp

Measuring real compilers

27

 1 void example() {
 2 int number;
 3
 4 printf("Enter a number: ");
 5 scanf("%d", &number);
 6
 7 int sum = 0;
 8 int i = 1;
 9 while (i <= number) {
10 sum += i;
11 i++;
12 }
13
14 printf("Sum is %d.\n", sum);
15 }

Def Des
Comp

Real compiler emits debug info for
its view of sum

Measure coverage with our
approach using source lines with
computation in sum defined
region...

5 / 6 src. lines with comp. covered

✅ Independent of compiler
✅ Possible to achieve 100%
✅ Free of anomalies

Real compiler
measured by
our approach

28

Our revised coverage approach

We construct a more accurate coverage metric:

● Measure coverage in terms of source lines
● For each variable, only expect coverage in

the variableʼs defined region
● Filter source lines to only those with computation

Experiments

29

Current status of tooling

● Implemented tool to calculate our “defined source lines” coverage metric
○ Uses compiler-emitted DWARF as coverage input

● Built better baseline via source analysis
○ Program source provides the baseline input

● Research prototype available as artifact with our CC 2024 paper

30

Measuring coverage

● In programs optimised by common
compilers, most variables are missing
values for ≥1 line where they are defined

● Some variables are entirely inaccessible

● A large chasm remains uncovered
● Lots of room for future debug info

coverage improvements

31

Replication study

Assaiante et al. (ASPLOS 2023) examined debug info coverage
across 5,000 Csmith-generated programs

In replicating their experiment using an adjusted version of our approach,
we found similarities that validate our work and also expected differences

32

Replication study

33

● Similar trends appear across both metrics
○ Our line coverage is slightly lower due to ours being relative to source vs. theirs relative to O0
○ Our availability is higher due to expected improvement from counting only defined region

● Validates our approach
○ Our source-relative optimised values ≅

their O0-relative optimised values × our O0 value (which they used as a baseline)

More detail in our CC 2024 paper

● Coverage for inlined functions
● Detailed description of replication study
● Case studies measuring specific compiler issues
● Knowledge extension: techniques to improve coverage
● Location views: debug info for source positions without instructions

34

Future improvements

● Planning to continue development towards a version for regular use
○ Likely rebuilding this as a new coverage mode for llvm-dwarfdump
○ Will start an RFC thread to discuss the best path with LLVM community

● Aim to make this more easily accessible on an ongoing basis
○ Integrate debug info metrics into Compiler Explorer
○ Add to existing metrics in LLVM nightly testing (LNT)
○ Create pre-merge metrics comparison similar to compile-time tracker
○ If you have feedback on these ideas, please let us know!

35

Thanks!
J. Ryan Stinnett
🏠 convolv.es

💼 Kingʼs College London

Stephen Kell
🏠 humprog.org

💼 Kingʼs College London

● Debug info often gets lost during optimisation
● This work focuses on improved coverage metrics (completeness) for

source coordinates and variable location information
to measure what is currently being lost

● In future work, we aim to also check consistency (correctness) of
this debug info as well

Summary

https://convolv.es
https://www.humprog.org/~stephen/

Replication study

● Assaiante et al.
○ Dynamic approach using coverage by running debugger over program

■ Counting described variables on each line
○ Calculates average fraction of variables at O1+ relative to O0

■ Only at lines common to both runs

● Our work
○ Static approach using coverage via DWARF debug info and static analysis

■ Counting described lines for each variable
■ For this replication, added a simple binary analysis step based on Valgrind

to ensure we only examined reachable lines like Assaiante et al.
○ Reports coverage relative to static analysis baseline for all optimisation levels

37

Variable locations in DWARF

DW_TAG_variable
 DW_AT_name ("y")
 DW_AT_decl_line (3)
 DW_AT_type (0x000000d5 "int")
 DW_AT_location
 [0x3f74, 0x3f7d):
 DW_OP_fbreg -12
 [0x3f7d, 0x3f90):
 <no location emitted>
 [0x3f90, 0x3f94):
 DW_OP_breg5 RDI+0, DW_OP_constu 0xffffffff, DW_OP_and,
 DW_OP_lit1, DW_OP_shl, DW_OP_stack_value

38

DWARF debug info generated by compiler (which we want to test) describes source
variables via Turing-powerful stack machine with registers and memory as inputs

Similar stack machine value
expressions also appear in LLVM IR
debug mappings

Locations are like a symbolic
mapping of source variables to
storage

Simulated output illustrating expressivity of DWARF locations

Ways of thinking about debug info

39

● If a variable is eliminated, it is not necessarily the case that it is absent from the
debug illusion: some debug info formats can describe how to reconstruct it from
state that remains
○ DWARF supports expressions in an interpreted stack machine language that the debugger can use to

compute functions of program state

● The more thoroughly a variable is “eliminated” from the emitted program, the
more it needs to be described in the debug info

● Rather than viewing optimisations and debugging as mutually excluding, it is more
accurate to see debug info as residualising the eliminations or simplifications
made during optimisation
○ Run-time program gets shorter during optimisation, debug info grows to maintain illusion

Priority of debug info for compiler authors

● Passes do try to preserve debug info…
○ e.g. LLVMʼs How to update debug info guide for optimisation pass authors

● Incentives not aligned for correct and complete debug info
○ Extra work to produce debug info on top of fast, correct run-time code

● No standard metrics for comparing debug info quality
○ Our own metric tracking coverage over variableʼs defined range (instead of scope) may

help move the conversation forward here

40

https://llvm.org/docs/HowToUpdateDebugInfo.html

Disabling optimisation is not always an option

● Real scenarios for optimised debugging
○ Core dumps collected in production
○ Resource heavy programs (e.g. video games) which are too slow without optimisation
○ Programs whose behavior depends on optimisation (e.g. Linux kernel)
○ Tracing unwanted behaviours (e.g. race conditions, memory errors) which may only

occur with optimisation
○ Any program … if you want to debug what actually ran!

● Poor developer experience has trained many programmers to assume
optimised debugging is somehow insurmountable
○ Some may avoid using debuggers entirely
○ In some cases, you can rebuild without optimisation and try debugging again…

41

https://lkml.org/lkml/2008/9/9/347

